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Abstract

The d-DiM h-HOPS MST problem is defined as follows: Given a set S of points in the d-
dimensional Euclidean space and s € S, find a minimum-cost spanning tree for S rooted at s
with height at most h. We investigate the problem for any constants h and d > 0. We prove
the first non trivial lower bound on the solution cost for almost all Euclidean instances (i.e.
the lower-bound holds with hight probability). Then we introduce an easy-to-implement,
very fast divide et impera heuristic and we prove that its solution cost matches the lower
bound.

1 Introduction

Given a positive integer h, an h-tree T is a rooted tree such that the number of hops (edges)
in the path from the root to any other node is not greater than h. The cost of T, denoted as
cost(T"), is the sum of its edge weights. The Minimum h-hops Spanning Tree problem (h-HOPS
MST) is defined as follows: Given a graph G(V, FE) with nonnegative edge weights and a node
s € V, find a minimum-cost h-tree rooted at s and spanning G. The h-HOPS MST problem
and the related problem in which the constraint is on the tree diameter find applications in
several areas: networks [4], distributed system design [22, 7], bit-compression for information
retrieval [6].

The efficient construction of a (minimum) spanning tree of a communication network yields
good protocols for broadcast and anti-broadcast®> operations. The hop restriction limits the
maximum number of links or connections in the communication paths between source and
destination nodes: It is thus closely related to restricting the maximum delay transmission
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time of such fundamental communication protocols. The hop restriction finds another relevant
application in the context of reliability: Assume that, in a communication network, link faults
happen with probability p and that all faults occur independently. Then, the probability that
a multi-hop transmission fails exponentially increases with the number of hops. Summarizing,
a fired bound on the maximum number of hops is sometimes a necessary constraint in order to
achieve fast and reliable communication protocols.
For further motivations in studying the h-HOPS MST problem see [5, 11, 15, 24].

The h-HOPS MST problem is NP-hard even when the edge weights of the input graphs form
a metric and h = 2 [1]. Algorithmic research on this issue thus aims to design and analyse
efficient approximation algorithms.
Several previous works [5, 11, 24] focused on the 2-dimensional geometric version of the problem
(2-Dim h-HOPS MST), i.e., when nodes are points of the Euclidean 2-dimensional space, the
graph is complete, and the edge weights are the Euclidean distances. As for the case h = 2,
polynomial-time, constant-factor approximation algorithms are given in [23, 8, 17, 14, 18] and
a PTAS is provided in [3] for 2-DiM h-HOPS MST. We remark that all such approximation
algorithms are not fast and/or easy-to-implement and, for h > 2, neither hardness results nor
polynomial-time (exact) algorithms are known for the 2-Dim h-HOPS MST problem. Even
more, for h > 3, no polynomial-time, constant-factor approximation algorithms are known.

Another series of papers have been devoted to evaluate and compare solutions for the 2-Dim
h-HopPs MST problem returned by some heuristics on random planar instances by performing
computer experiments [9, 11, 12, 21, 24]. Almost all such works adopt the uniform input random
model, i.e., points are chosen independently and uniformly at random from a fixed square of the
plane. The motivation on this input model is twofold: On one hand, the uniform distribution
is the most suitable choice when nothing is known about the real input distribution or when
the goal is to perform a preliminary study of the heuristic on arbitrary instances. On the other
hand, uniform distribution well models important applications in the area of ad-hoc wireless
and sensor networks: In such scenarios, once base stations are efficiently located, a large set
of small wireless (mobile or not) devices are well-spread over a geographical region. Clearly,
in these networks, efficient and reliable protocols for broadcast and accumulation is a primary
goal [10].
We emphasize that no theoretical analysis is currently available on the expected performance
of any efficient algorithm for the 2-DiM hA-HOPS MST problem.

Our first result is a lower bound on the cost of any h-tree spanning a random set of points, i.e.,
a finite set of points chosen independently and uniformly at random from a fixed d-dimensional
hypercube (d-cube).

Theorem 1 Let h,d > 1 be constants. Let S be a random set of n points in a d-cube of side
length L and let T be any h-tree spanning S. Then, it holds that

Q(L-n%> ifd=1

cost(T') = with high probability.

114 d=-1 .
QI L-n ¢ dhtl-d otherwise

Here and in the sequel the term with high probability (in short, w.h.p.) means that the event
holds with probability at least 1 — e™¢™, for some constant ¢ > 0. So, according to our input
model, claiming that a given bound holds w.h.p. is equivalent to claiming that it holds for
almost all inputs.



We then introduce a simple Divide et Impera heuristic h-PARTY. It makes a partition of the
smallest d-cube containing S into cells. In each non-empty cell, it selects an arbitrary sub-root
s’ and connects s’ to the root s; finally, it solves the non-empty cell sub-instances of the problem
with A — 1 hops, recursively. Choosing the size of the cells is the critical technical issue: This
is solved by means of the lower bound in Theorem 1.

Theorem 2 Let h,d > 1 be constants. Let S be a set of n points in a d-cube of side length L
and let s € S. For any h-tree T returned by h-PARTY on input (S, s), it holds that

0 (L : n%) ifd=1
cost(T) = 0] <L . nl_%+dhi_11d> otherwise.

Theorems 1 and 2 imply that, for any fixed h, h-PARTY returns a solution which is, with
high probability, a constant factor approximation of the optimum. So, even though this fast
algorithm provides no provably-good approximation in the worst-case, it works well on almost-
all Fuclidean instances.

h-PARTY is the first heuristic that works in O(n) time and it can be thus efficiently applied
to very large instances. In fact, the heuristic has been implemented and tested on instances of
hundreds of thousands points [9].

Notice that, differently from Theorem 1, the bound in Theorem 2 holds for any Euclidean
instance. It thus follows that random instances are those having the largest cost.

1.1 Related works

The 2-DiMm 2-HOPS MST problem can be easily reduced to the classic Facility Location Problem
on the plane. Indeed, the distance of the root from vertex ¢ can be seen as the cost of opening a
facility at vertex ¢. It thus follows that all the approximation algorithms for the latter problem
apply to the 2-DiM 2-HOPS MST as well. In particular, the best result is the PTAS given
by Arora et al in [3]. The algorithm works also in higher dimensions; however, it is based
on a complex dynamic programming technique that makes any implementation very far to be
practical. Several polynomial-time approximation algorithms for the METRIC 2-HOPS MST
problem have been presented in the literature. Notice that, in [1] Alfandari and Paschos proved
that METRIC 2-HOPS MST is MAX SNP-hard and, hence, PTAS cannot be found for this
problem unless P = NP. The first constant factor approximation algorithm was given by
Shmoys et al in [23], they presented a 3.16 approximation algorithm. After this, a series of
constant factor approximation algorithms was published, see [8, 17, 14]. Currently, the best
factor is 1.52 due to Mahdian et al [18]. All such algorithms make use of Linear Programming
relaxations that yield not practically efficient implementations.

As for the general h-HOPS MST problem, Gouveia [12] and, successively, Gouveia and Re-
quejo [13] provided and experimentally tested exact super-polynomial-time algorithms, based
on the branch and bound technique. In [2, 16] a polynomial-time O(log n)-approximation algo-
rithm is given, but its time complexity is n®™. Voss in [24] presented a tabu-search heuristic
for the h-HOPS MST problem, but the time complexity is very high when the graph is dense.
In [21] heuristics based on Prim algorithm and on Evolutionary techniques have been exper-
imentally tested. Finally, in [9] experimental tests have been performed on greedy heuristics
and on h-PARTY.



2 Preliminaries

In the proof of our results we make use of the well-known Holder inequality. We thus present
it in the following convenient forms. Let z;, 2 = 1,...,k be a set of k non negative reals and let
p,q € R such that p > 1 and ¢ < 1. Then, it holds that:

k p
Zfz ( lel>; (1)

k q
ngk(%) . 2)
=1

3 The lower bound

Next lemma is the first lower bound on the cost of h-trees for general Euclidean instances.

Lemma 1 Let h,d > 1 be constants. Let S be a set of points in a d-dimensional Fuclidean

space. Consider a partition of the space in d-cubes with the side length of each d-cube being 1

and let n; be the number of the d-cubes containing points of S. For any h-tree T spanning S it

holds that )

Q(Lnfh ifd=1

cost(T') = 141
Q (l -m, dh+1_d> otherwise.

1
Proof. We equivalently show that cost(T") = 2 (L . nHW) where

- ifh=1
T =0 d-g(h—1)+d otherwise.

Notice that 1/g(h) = dh+—1 ifd>1and 1/g(h) =+ ifd=1.

Let s be the point root of the tree T" and consider a d-sphere centered at s and of radius
r=0(-(n)d ) such that the number n; of non-empty d-cubes outside the sphere is at least %
Finally let B be the set of points in these nj d-cubes.

The proof is by induction on the height h of the tree T. If h = 1, for each of the nj d-cubes,
there is an edge in T of length at least r. This implies that

1 141

Let h > 2. Let A = {al,ag, e ,a|A‘} be the set of points whose father is at distance at least 7
and let §=1— d + (h) Two cases may arise.

- Case |A| > nl Since there are at least |A| edges of length 7, it holds that

1 141
cost(T') > % 1Al =Q( - nlﬁer) —Q (l . nl+g(h)> .



- Case |A] < nf For every point x in B there is a path from = to the root s with at most
h hops. Since the distance from x to s is at least r in the path there is at least one edge of
length at least 7. Hence we can partition the points in AU B into [A| subsets Ay, Ag, ... A4
where a point y is in A; if a; is the first point in A in the path from y to s. Notice that the
points in the subsets A;, 1 < i < |A[, belong to disjoint subtrees 71, T, ..., Tj4 of T' where T;
is an (h — 1)-tree rooted at a;. Let n;; be the number of d-cubes containing the points of T;,
1 <i < JA|. It holds that

cost(T) > Z 1cost( i)

= Q Z‘Al l-ng, 1+ 5mn 1)> by inductive hypothesis
Z‘A‘ nyi 1+g(h171) .. . .
= ST by the Holder inequality
= (l oy -y Tat- 1)) since ZLi'l ny; > ny > g
14—l

= <l n, ~50n e since |A| < nlﬁ

= Q < 1+d g&(h)l)cgl;(
1+ d-g(h—1)

— om, OO "“”) since g(h) =d-g(h—1) +d.
1+

— g(h)

= Q(l-n ° >

The thesis follows. O

By applying the probabilistic method of bounded differences [19], we derive the following
lower bound

Theorem 1 Let h,d > 1. Let S be a random set of n points in a d-cube of side length L and
let T' be any h-tree spanning S. Then, it holds that

) (L : n%> ifd=1
cost(T') = 0 <L ‘ nl_tli—’—dhi_ll—d) ihermise with high probability.

Proof. Let us partition the d-cube into n d-cubes, each of them with side length [ = % Let
nd

n; be the number of non-empty d-cubes. Lemma 1 implies that

Q(L-n nll+h ifd=1
cost(T') =

d—1

_1 HopEe .
) (L-n i-n, ¢ ) otherwise

The theorem follows by noticing that, by applying the method of bounded differences [19], we
have that n; > n/4, with high probability. O



h-PARTY: n =400, h =3 h-PARTY: n =400, h =8

(a) (b)

Figure 1: The trees yielded by the A-PARTY heuristics on the same random instance with 400
points and h = 3, 8.

procedure h-PARTY(S, s)
if h=1then T « {{z,s}x € S — {s}};
else begin
T « §;
if d=1 then k — US&J;
1—14 _d-t
else k — L|S| d d”“*dJQ
Let L be the side length of the smallest d-cube containing all points in S
Partition the d-cube into d-cubes of side length —kLi ;
d

Let k' be the number of d-cubes and let S; be the points of S in the i-th d-cube, 1 < i < k/;
for i — 1 to k' do
if |S;| > 1 then begin
choose a point s’ in S;;
T — TU{{s', s}
if |S;| > 1 then T « TU (h — 1)-PARTY(S;, ¢);
end;
end;
output 7'

Figure 2: Algorithm h-PARTY.



4 The Divide-et-Impera heuristic

The heuristic h-PARTY is described in Figure 2 while its solution cost is proved in the following

Theorem 2 Let h,d > 1 be constants. Let S be a set of n points in a d-cube of side length L
and let s € S. For any h-tree T returned by h-PARTY on input (S, s), it holds that
0 (L : n%) ifd=1

d—1

cost(T) =
@) 0 <L-n1‘li+dh“—d> otherwise.

1 1
Proof. We equivalently show that cost(T") = O (L : n1_3+m) where

o(h) = { d ifth=1
d-g(h—1)+d otherwise
Notice that, as in Lemma 1, 1/g(h) = ﬁ if d > 1 and 1/g(h) = f if d = 1. The proof is by
induction on h. If h =1 it is clear that cost(T") = O(L - n).
For h > 2, let ¢t be the number of non-empty d-cubes in the d-cube of size length L and
{q1,q2,...q:} be the set of points selected by the procedure in the ¢ non-empty d-cubes, let
T; be the (h — 1)-tree rooted in ¢; and S; be the set of points spanned by T;, 1 < i < ¢t. By

1 1
inductive hypothesis, we get cost(7;) = O <L : |S¢|173+9(h*1) ) We thus have that

fd
cost(T) = St d(gi,s)+ >t cost(Ty)
< Lot+ Y cost(Ty) since d(a;,s) < L,1 <i<t
Sli1
= 0 (L Y k% . ]Si\l d+9(h—1>) by inductive hypothesis
t s\ mat e
= 0 <L t+ Lt <Zi:tl |Sl‘) ¢ ol D) by the Holder inequality
kd

1 1 1 1

= 0 (L “t+ k% -td g(h=1) -n173+9(h*1)) since S_, |Si| = n
1 1 1

= 0 (L ck+L- -k 9-1) -n1_3+g(’1—1)> since t < k
- 0 (L plmatem o n—g(hl_l)(1—%+ﬁ)+1—$+g(,f_1)>
= 0 <L ol Tt 4L nlclﬁd-g(gffh)ﬁ»dgw))

= 0 (L . nlféJrﬁ) .

gh)—d __ _ _dg(h—=1) _ 1 O
(h=1)-g(h) = d-g(h—1)-g(h) — g(h)"

where the last step follows since 77

Finally, it is not hard to verify that, for any h > 0, the worst-case time complexity is O(n).

5 Open problems

The main open question is to refine the asymptotical analysis in order to obtain bounds on
the constant factors. It would be interesting to understand how the constant factors depend
on h: As suggested by the experimental results [9], they can even depend exponentially on
h. Finally, it would be interesting to extend our asymptotical analysis to non constant h (e.g.

h = Q(logn)).
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