
Trade-offs Between Time and Memory in a
Tighter Model of CDCL SAT Solvers

Jan Elffers1, Jan Johannsen2, Massimo Lauria3, Thomas Magnard4,
Jakob Nordström1, and Marc Vinyals1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{elffers,jakobn,vinyals}@kth.se

2 Ludwig-Maximilians-Universität München, Munich, Germany
Jan.Johannsen@ifi.lmu.de

3 Universitat Politècnica de Catalunya, Barcelona, Spain
lauria@cs.upc.edu

4 École Normale Supérieure, Paris, France
magnard@clipper.ens.fr

Abstract. A long line of research has studied the power of conflict-
driven clause learning (CDCL) and how it compares to the resolution
proof system in which it searches for proofs. It has been shown that CDCL
can polynomially simulate resolution even with an adversarially chosen
learning scheme as long as it is asserting. However, the simulation only
works under the assumption that no learned clauses are ever forgotten,
and the polynomial blow-up is significant. Moreover, the simulation
requires very frequent restarts, whereas the power of CDCL with less
frequent or entirely without restarts remains poorly understood. With a
view towards obtaining results with tighter relations between CDCL and
resolution, we introduce a more fine-grained model of CDCL that captures
not only time but also memory usage and number of restarts. We show
how previously established strong size-space trade-offs for resolution can
be transformed into equally strong trade-offs between time and memory
usage for CDCL, where the upper bounds hold for CDCL without any
restarts using the standard 1UIP clause learning scheme, and the (in
some cases tightly matching) lower bounds hold for arbitrarily frequent
restarts and arbitrary clause learning schemes.

1 Introduction

For two decades the dominant strategy for solving the Boolean satisfiability
problem (SAT) in practice has been conflict-driven clause learning (CDCL)
[5, 27, 28]. Although SAT is an NP-complete problem, and is hence widely
believed to be intractable in the worst case, CDCL SAT solvers have turned out
to be immensely successful over a wide range of application areas. An important
problem is to understand how such SAT solvers can be so efficient and what
theoretical limits exist on their performance.

Previous Work At the core, CDCL searches for proofs in the proof system
resolution [14]. While pre- and inprocessing techniques can, and sometimes do,
go significantly beyond resolution (incorporating, e.g., solving of linear equations
mod 2 and reasoning with cardinality constraints), understanding the power
of even just the fundamental CDCL algorithm seems like an interesting and
challenging problem in its own right. Three crucial aspects of CDCL solvers,
which are the focus of our work, are running time, memory usage, and restart
policy.

In resolution, time is modelled by the size/length complexity measure, in that
lower bounds on proof size yield lower bounds on the running time of CDCL
solvers. Resolution proof size is a well-studied measure. It is not hard to show that
it need never be larger than exponential in the formula size, and such exponential
lower bounds were shown already in, e.g., [20, 25, 31].

Another more recently studied measure is (clause) space, measured as the
number of clauses needed in memory while verifying a proof.5 We remark that
although the study of space was originally motivated by SAT solving concerns,
it is not a priori clear to what extent this abstract space measure corresponds
to CDCL memory usage. Space need never be more than linear in the worst
case [24], even though such proofs might have exponential size, and optimal linear
lower bounds on space were obtained in [1, 10, 24].

More interesting than such space bounds is perhaps what can be said regarding
simultaneous optimization of time and space, which is the setting in which SAT
solvers operate. There are strong trade-offs [6, 9, 11] showing that this is not
possible in general. What this means is that one can find formulas for which
(a) there are short proofs and (b) also space-efficient proofs but (c) no proof can
get close to being simultaneously both size- and space-efficient.

Regarding restarts, such a concept does not quite make sense for resolution
proofs and so has not been studied in that context as far as we are aware.

It is natural to ask to what extent upper and lower bounds for resolution
apply to CDCL. By comparison, it is well understood that the DPLL method
[22, 23] searches for proofs in tree-like resolution, which incurs an exponential
loss in performance as compared to general resolution. There has been a long
line of research investigating how CDCL compares to general resolution, e.g.,
[7, 18, 26, 32], culminating in the result by [30] that CDCL viewed as a proof
system polynomially simulates resolution with respect to size/time. The noncon-
structive part of this result is that variable decisions are not done according to
some concrete heuristic but are provided as helpful advice to the solver. This
limitation is probably inherent, since a fully algorithmic result would have unex-
pected implications in complexity theory [2]. It is worth noting, however, that in
independent work [3] showed that for resolution proofs where all clauses have
constant size, using a random variable selection heuristic will yield a constructive
polynomial-time simulation.

5 We mention for completeness that there is also a total space measure counting the
number of literals in memory, which has been studied in, e.g., [1, 13, 15, 16], but for
our purposes clause space seems like a more relevant measure to focus on.

2

One strength of [3, 30] is that the results hold for any learning scheme as
long as it is asserting (an assumption that anyway lies at the heart of the CDCL
algorithm). The results also have a few less desirable aspects, however:

– The simulations require very frequent restarts. Only the first conflict after
each restart is useful, and after that one has to wait for the next restart to
make any further progress.

– There is also a large polynomial blow-up in the simulations, which means
that for practical purposes these simulations are far too inefficient to yield
really concrete insights into CDCL performance as compared to resolution.

– Finally, and most seriously, the results crucially rely on the assumption
that no learned clause is ever forgotten. This is unrealistic, as typically
around 90–95% of learned clauses are erased during CDCL search and this is
absolutely essential for performance.

It would be desirable to obtain results relating CDCL and resolution that also
take the above aspects into account.

Addressing one of these concerns, a more fine-grained study of the power
of CDCL without restarts has been conducted in, e.g., [8, 17, 18, 19]. One
problematic aspect here is that the models studied appear to be quite far from
actual CDCL behaviour. Some papers assume non-standard and rather artificial
preprocessing steps. Others study CDCL models that do not enforce that unit
clauses are propagated or that do not trigger conflict analysis as soon as a clause
is falsified. In the latter case, as a result one gets very limited restrictions on what
the clause learning schemes are, and it is hard even to talk about what “conflict
analysis” is supposed to mean in this context. This is not an issue for results
establishing lower bounds limiting what CDCL can do—here a stronger model of
CDCL only makes the results stronger—but for upper bounds the results become
too optimistic, indicating that the theoretical CDCL model can do much better
than what seems possible in practice. As a case in point, there are currently
no known separations between general resolution and CDCL without restarts,
but part of the reason for this appears to be that the models of CDCL without
restarts are clearly too strong to be realistic.

We are not aware of any work on models measuring not only time but also
memory consumption in a proof system formalizing CDCL. As discussed above,
one can define a space measure for resolution proofs, but it is not clear what
relation, if any, there is between this space measure and the size of the clause
database during CDCL execution.

Our Contributions In this work, we present a proof system that tightly models
running time, memory usage, and restarts in CDCL. The model draws heavily
on [3, 30], combined with ideas from [18] to capture memory and restarts. Indeed,
we do not claim any key new technical insights for this part of our work, but
rather it is more a matter of carefully studying previous models and painstakingly
putting the pieces together to get as clean and simple a proof system as possible
that is nevertheless significantly “closer to the metal” than in previous papers.

3

Our CDCL proof system enforces unit propagation and triggers conflict
analysis directly at a conflict. It can incorporate any asserting learning scheme
(as long as it is based on resolution derivations from the current conflict and
reason clauses), and this scheme is specified explicitly as a parameter. Right
from the definitions one obtains natural measures of time, memory usage, and
restarts. Variable decisions are still provided externally, just as in [3, 30], but in
principle one could also plug in, say, the most commonly used VSIDS (variable
state independent decaying sum) decision scheme with phase saving and analyse
what proofs can be generated using these heuristics (though this is not the focus
of our current work). Since we are now managing the database of learned clauses
explicitly, we also have to specify a clause database reduction policy. In this
paper, the decisions about which clauses to delete are also provided to the solver,
but the model allows to plug in a concrete reduction policy as well.

We argue that the proof system we present faithfully models possible execution
traces during CDCL search. Some interesting questions to study in this model
are as follows:

1. Do upper and lower bounds on resolution size and space transfer to this
CDCL proof system?

2. How does CDCL compare to general resolution if we want efficient simulations
with respect to both time and space, and in addition aim for at most constant-
factor blow-ups rather than arbitrary polynomial blow-ups?

3. What is the power of CDCL without restarts compared to the subsystems of
tree-like resolution or so-called regular resolution? (Briefly, regularity is the
somewhat SAT solver-like restriction on resolution that along each path in
the proof any variable is branched over only once.)

The worst-case upper bounds on size and space in resolution carry over to
time and memory usage in CDCL, and it turns out that this can in fact be
read off from [29], although that paper uses quite a different language. More
interestingly, we show that there is a straightforward translation from CDCL
to resolution that preserves both time and space, and so we obtain that all size
and space lower bounds previously established for resolution apply also to CDCL
(which, in particular, was not at all obvious for space).

This means that the lower bounds on time-space trade-offs in [6, 9, 11] also
hold for CDCL. But this does not yet yield true trade-offs, since for such results
we also want upper bounds. That is, we want to show that CDCL can find
time- or space-efficient proofs optimizing just one of these measures in isolation.
It is known how to construct such proofs in resolution, but these proofs are
not obviously CDCL-like. Since SAT solving was mentioned as a motivation
for [6, 9, 11] it is a relevant question whether the size-space trade-offs shown
in these papers correspond to anything one could expect to see in practice, or
whether the size- and space-efficient proofs have such peculiar structure that
nothing similar can be found by CDCL proof search.

The main contribution of our work is to address the question of whether true
time-space trade-offs can be established for CDCL. Finding an answer turns out
to be surprisingly technically challenging, and we are not able to prove the known

4

trade-offs for exactly the same formulas as in [6, 9, 11] However, for many of the
formulas it is possible to modify them slightly to obtain CDCL trade-offs with
essentially the same parameters. An additional feature of these trade-offs is that
all our upper bounds hold for CDCL without any restarts using the standard
1UIP (first unique implication point) learning scheme, while the (often tightly
matching) lower bounds hold for arbitrarily frequent restarts and arbitrarily
chosen clause learning schemes (even non-asserting ones).

We leave as open problems whether CDCL with 1UIP clause learning and
with or without restarts can simulate or be separated from general or regular
resolution, respectively. While those problems still look quite challenging, we
hope and believe that it should be possible to make progress by investigating
them in a model that more closely resembles what happens during CDCL proof
search in practice, such as the model presented in this paper.

Organization of This Paper In Section 2 we describe our proof system
modelling CDCL. Section 3 gives an overview of our time-space trade-off results.
Since the proofs are quite long and technical, however, we have to defer essentially
all of them to the full-length version of the paper, and in this extended abstract
we only sketch the proof of a simpler (but still nontrivial) trade-off for CDCL
with restarts. We make some concluding remarks in Section 4.

2 Modelling CDCL as a Proof System

We start by describing our model of CDCL and how it is formalized as a proof
system. As already mentioned, this is very much inspired by [3, 30], but with
ideas added from [18]. We want to remark right away that we describe the model
at a level of detail that might seem excessive to SAT practitioners familiar with
CDCL. We do so precisely because a serious issue with many contributions on
the theoretical side has been that they fail to get crucial details of the model
right, as discussed in the introduction.6

Preliminaries Let us first fix some standard notation and terminology. A
literal a over a Boolean variable x is either x itself or its negation x (a positive
or negative literal, respectively). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals, where the clause is unit if it contains only one literal. A CNF formula F
is a conjunction of clauses F = C1 ∧ · · · ∧ Cm. We think of clauses and formulas
as sets, so that the order of elements is irrelevant and there are no repetitions.

A resolution derivation of C from F is a sequence of clauses (C1, C2, . . . , Cτ)
such that Cτ = C and every Ci is either a clause in F (an axiom) or is derived

6 Indeed there were issues with the model we presented in the conference version of
this paper as well. Our description of the behaviour of the solver after a restart was
not matching exactly what actual solvers seem to do in practice. Our trade-offs deal
with CDCL proofs without restarts, therefore the correctness of the results was not
compromised.

5

from clauses Cj , Ck with j, k < i, by the resolution rule

C ∨ x D ∨ x
C ∨D , (1)

where we say that C ∨ x and D ∨ x are resolved over x. A derivation is trivial if
all variables resolved over are distinct and each Ci either is an axiom or is derived
from a resolution rule application where one of the resolved clauses is an axiom.
A resolution refutation of, or resolution proof for, an unsatisfiable formula F
is a derivation of the empty clause ⊥ (containing no literals) from the axioms
in F . The length or size of a proof is the number of clauses in it counted with
repetitions. The space of a proof at step t is the number of clauses at steps ≤ t
that are used in applications of the resolution rule at steps ≥ t. The space of a
proof is obtained by measuring the space at each step and taking the maximum.

A Formal Description of CDCL A CDCL solver running on a formula F
decides variable assignments and propagates values that follow from such assign-
ments until a clause is falsified, at which point a learned clause is added to the
clause database D (where we always have F ⊆ D) and the search backtracks. A
key concept is the current partial assignment maintained by the solver together
with some book-keeping why variables were set this way, which we refer to as
the trail . This is a sequence s = (x1 = b1/∗, x2 = b2/∗, . . . , x` = b`/∗) where
all variables are distinct and where ∗ = d indicates that the assignment is a
decision and ∗ = C that it was propagated by the clause C. We write s≤j and
s<j to denote the subsequences that are the prefixes of length j and j − 1 of s,
respectively. We denote the empty trail by ε.

The decision level of an assignment xj = bj/∗ is the number of decision
assignments in s≤j . The decision level of a (non-empty) trail is that of its last
assignment. Identifying a trail s with the partial assignment it defines, we write
C�s to denote the clause C restricted by s, which is the trivially true clause if
s satisfies C and otherwise C with all literals falsified by s removed, and this
notation is extended to sets of clauses by taking unions. If a trail s falsifies a
clause C, we say that C is asserting if it has a unique variable at the maximum
decision level of s. If so, the second largest decision level represented in C is the
assertion level of C.

A trail s = (x1 =b1/∗, . . . , x`=b`/∗) is legal with respect to a formula F and
clause database D ⊇ F if the following holds:

– D�s<`
does not contain the empty clause;

– if the jth element of s is xj =bj/d, then D�s<j does not contain a unit clause;
– if the jth element of s is xj = bj/C, then C is contained in D and has the

property that C�s<j is unit and is satisfied by setting xj = bj .

This captures properties that must hold during CDCL search, and so in what
follows trails are implicitly required to be legal unless otherwise specified.

At each point in time, the solver is in a CDCL state (F,D, s), where at the
beginning D = F and s = ε. It is convenient to describe the solver as being in one
of the four modes Default (where it starts), Unit, Conflict, or Decision, where

6

transitions are performed as described below (guided by plug-in components that
specify the detailed behaviour; also to be discussed in what follows):

Default If s falsifies a clause in D, the solver moves to Conflict, otherwise
it checks that all variables in F have been assigned, and in that case the
solver halts and outputs SAT together with the assignment s. Otherwise, if
D�s contains a unit clause, the solver transits to Unit mode. If none of the
previous cases applies, the solver uses its restart policy to decide whether
to restart, i.e., to set s = ε and to move to Default. At last, if none of the
others cases applies, solver uses its clause database reduction policy to decide
whether to shrink D to D′ (D, where D′ must still contain F and all clauses
mentioned in the current trail s, after which it moves to Decision.

Conflict If s has decision level 0, the solver outputs UNSAT. Otherwise it applies
the learning scheme to derive an asserting clause C and then backjumps by
updating the state to (F,D∪{C}, s′) (where s′ is the prefix of s that contains
all assignments with decision level less than or equal to the assertion level
of C), and shifts to Unit mode.

Unit The solver uses the unit propagation scheme to pick a clause C in D such
that C�s is unit, extends s with the assignment x= b/C that satisfies C�s,
and moves to Default mode.

Decision The solver uses the decision scheme to determine an assignment
x=b/d with which to extend the trail and moves to Default mode.

We say that a CDCL state (F,D, s) is stable if, when solver is in Default
mode, it causes neither a conflict, a unit propagation nor to output SAT. We say
it is a conflict state if it causes a move from Default to Conflict. We remark
that CDCL solvers typically apply restarts and database reductions only in the
first stable state after a conflict. However, it is not hard to see that from a proof
complexity point of view the solver does not get any stronger by allowing these
steps to be performed at any stable state, and since this simplifies the description
we have done so above.

In order to obtain a concrete CDCL implementation, one needs to instantiate
the components referred to above. Let us briefly discuss how this can be done.

For the clause learning scheme the assumption is that the clause is derivable
in resolution from the clause falsified (the conflict clause) and the clauses causing
unit propagations (the reason clauses) and that the learned clause is always
asserting. For our upper bounds we use the 1UIP learning scheme from [33],
which is simply a trivial resolution derivation from the conflict clause and the
reason clauses processed in reverse order up to the first point when there remains
only one variable of maximal decision level in the clause.7

The restart policy determines when the solver should clear the trail and
start over from the beginning (but keeping the clause database as it is). From a
theoretical point of view adding more frequent restarts can only make the solver
more powerful. Hence, in order to obtain the strongest possible result we want to

7 In fact, our results hold for any UIP scheme, but for simplicity we focus on 1UIP,
which is anyway dominant in practice.

7

prove our upper bounds on CDCL with a strict no-restarts policy and our lower
bounds in a setting with no restrictions on restarts.

If there is more than one unit clause that can propagate in Unit mode, the unit
propagation scheme determines in which order the clauses are chosen. Typically
this will depend somewhat randomly on low-level implementation details, and
therefore we try to prove our upper and lower bounds for the settings when the
order chosen is maximally unhelpful and maximally helpful, respectively.

The decision scheme is used to choose the next variable to assign when there
are no unit propagations. The dominant heuristic in practice is VSIDS [28], but
for our theoretical analysis we follow [3, 30] by allowing the decisions to be chosen
externally by a helpful oracle and fed to the solver.

The database reduction policy , finally, regulates when and how to forget
learned clauses. Making this aspect explicit is the main difference between our
work and [3, 30]—the latter papers crucially need the unrealistic assumption that
no learned clauses may ever be erased. In principle, here one could plug in, say,
the literal block distance (LBD) heuristic in [4] to decide which clauses to throw
away or keep, but in this work we will let this, too, be part of the external input
provided to construct a CDCL proof.

Formalizing CDCL as a Proof System In order to construct a proof system
corresponding to CDCL, we will simply let the proofs be execution traces that
contain enough information to allow efficient verification that they are consistent
with the detailed description of the CDCL model above. More formally, we say
that a CDCL trace π is an ordered sequence of the following types of elements:

– decisions xi=b/d;
– unit propagations xi=b/C (with reason C);
– learned clauses addC/σC (with conflict analysis σC);
– deletions of clauses delC;
– restarts R.

Given a CDCL model with components as above partially or fully specified, a
trace π is legal , or is a CDCL proof , if it is consistent with an execution of the
CDCL model as described above.

We say that a CDCL trace is a CDCL proof of unsatisfiablity or CDCL
refutation of F if it is legal and makes the CDCL solver output UNSAT, and that
it is a CDCL proof of satisfiablity if the output is SAT. It should be clear that
if the components specified are efficiently computable, then CDCL traces are
efficiently verifiable and constitute a proof system in the sense of [21] (and since
all traces we construct will be legal, we will sometimes use the words “trace” and
“proof” as synonyms).

The time of a CDCL proof π is the number of elements in the sequence
plus the sum of the length of all conflict analysis resolution derivations σC ,
i.e., the total number of variable decisions, propagations, and steps in conflict
analysis. The space of the proof at a given point in time is the number of learned
clauses |D \ F |, i.e., the number of statements addC/σC minus the number of

8

statements delC up to that point, and the space of a proof is obtained by taking
the maximum over all time steps in it.

These measures are intended to capture the execution time and memory usage
of a CDCL solver execution described by the trace π, and in addition we want
them to translate to length and space bounds for resolution. This is indeed the
case, as we state in the next theorem (the proof of which is provided in the
full-length version of this paper).

Theorem 1. If there is a CDCL proof with some learning scheme using trivial
resolution (in particular, 1UIP) refuting a CNF formula F in time τ and space s,
then F has a resolution refutation in length at most τ and space s+ O(1).

The meaning of this theorem is that all lower bounds on length and space
in resolution automatically carry over to impossibility results for conflict-driven
clause learning. These results hold even for very general models of CDCL, with
arbitrarily frequent restarts and arbitrarily smart decision and database reduction
heuristics, as long as the clause learning scheme is realistic. In order to prove
upper bounds for CDCL, however—i.e., showing that proof search can (at least
sometimes) be performed in a time- and space-efficient manner compared to the
best-case resolution proof scenario—we have to work harder.

3 Overview of Time-Space Trade-off Results

In this section we survey the kind of CDCL time-space trade-offs obtained in
this paper, and discuss some of the challenges that have to be overcome when
establishing such results.

Statement of Trade-off Theorems Our first set of trade-off results are for
formulas defined in terms of pebble games as described in [12]. Given a directed
acyclic graph (DAG) G with source vertices S and a unique sink vertex z, and
with all non-sources having fan-in 2, we identify vertices with variables and define
the pebbling formula PebG to consist of the following clauses:

– for all s ∈ S, the unit clause s (source axioms),
– for all w with predecessors u, v, the clause u ∨ v ∨ w (pebbling axioms),
– for the sink z, the unit clause z (sink axiom).

These formulas are not too interesting, since it is easy to see that they are
solved immediately by unit propagation, but if we replace each variable by an
exclusive or of two new, fresh variables, and then expand out to CNF we obtain a
XORified pebbling formula Peb⊕G as in Figure 1b. Given the right kind of graphs,
[11] showed that such formulas have strong trade-offs between length and space
in resolution, and we are able to lift most of these results to CDCL. We give two
examples of such results below.

Theorem 2 (Robust trade-offs (informal)). There are XORified pebbling
formulas Fn of size Θ(n) such that:

9

z

x y

u v w

(a) Pyramid graph Π2 of height 2.

(u1 ∨ u2)

∧ (u1 ∨ u2)

∧ (v1 ∨ v2)

∧ (v1 ∨ v2)

∧ (w1 ∨ w2)

∧ (w1 ∨ w2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

(b) XORified pebbling formula Peb⊕Π2
.

Fig. 1. Example pebbling formula for the pyramid of height 2.

1

0 0

x y

z

(a) Labelled triangle graph.

(x ∨ y)

∧ (x ∨ y)

∧ (x ∨ z)
∧ (x ∨ z)
∧ (y ∨ z)
∧ (y ∨ z)

(b) Corresponding Tseitin formula.

Fig. 2. Example Tseitin formula.

10

– CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and
space O(n/ log n) simultaneously.

– CDCL with 1UIP learning and no restarts can refute Fn in space O
(
(log n)

2)
and time nO(logn) simultaneously.

– Any CDCL refutation of Fn in space o(n/ log n) requires time at least
nΩ(log logn) regardless of learning scheme and restart policy.

Theorem 3 (Exponential trade-offs (informal)). There are XORified peb-
bling formulas Fn of size Θ(n) such that:

– CDCL with 1UIP learning and no restarts can refute Fn in time O(n) and
space O

(
4
√
n
)

simultaneously.

– CDCL with 1UIP learning and no restarts can refute Fn in space O
(

8
√
n
)

and time nO(8
√
n) simultaneously.

– Any CDCL refutation of Fn in space O
(
n1/4−ε

)
for ε > 0 requires exponential

time regardless of learning scheme and restart policy.

The other formula family considered in this paper are Tseitin formulas , which
are defined in terms of undirected graphs with vertices labelled 0/1 in such a
way that the total sum of all vertex labels is odd. The variables of the formula
are the edges of the graph. For every vertex we add a constraint saying that the
parity of the number of true edges incident to the vertex is equal to the vertex
label. Summing over all vertices, each edge is counted exactly twice and hence
the total number of true edges must be even. But this contradicts that the sum
of the labels is odd, and thus the formulas are unsatisfiable. Figure 2b gives an
example Tseitin formula generated from the labelled graph in Figure 2a.

Using Tseitin formulas over long, skinny grids, we can build on [9] to obtain
the following trade-off, which applies even for superlinear space.

Theorem 4 (Superlinear space trade-offs (informal)). For a Tseitin for-
mula Fw,` over a grid graph with w rows and ` columns, 1 ≤ w ≤ `1/4, and with
double edges between every two vertices at horizontal distance one or vertical
distance one, it holds that

– CDCL with 1UIP learning and no restarts can refute Fw,` in time O(25w`)
and space O(22w).

– CDCL with 1UIP learning and no restarts can refute Fw,` in space O(w log(`))
and time O

(
`O(w)

)
.

– For any CDCL refutation in time τ and space s, regardless of learning scheme
and restart policy, it holds that

τ =

(
2Ω(w)

s

)Ω(log log `
log log log `)

.

Proof Techniques and Technical Challenges All the trade-offs stated in
Theorems 2, 3, and 4 are known to hold for resolution, and so by Theorem 1 we
immediately obtain that the lower bounds carry over to CDCL. What we need

11

to show in order to establish these theorems is that CDCL can find proofs that
match the upper bounds in resolution.

The general idea how we would like to do this is clear: given a resolution
proof π = (C1, C2, . . . , Cτ), we should force the CDCL solver to efficiently learn
the clauses Ci one by one, making sure at all times that the clause database
size is comparable to the space complexity of the resolution proof. This seems
hard to do, however, and somewhat ironically what causes trouble for us are
the unit propagations that otherwise make CDCL so efficient. To illustrate the
problem, suppose that we have learned C ∨ x and D ∨ x and now want to learn
their resolvent C ∨D. It would be nice to decide on all literals in C ∨D being
false, after which we could get a conflict on x. But there might be other clauses
in the database that propagate literals to “wrong values” before we manage to
falsify all of C ∨D, and if so the CDCL search will veer off in another direction
and we will not be able to learn this resolvent.

This highlights two technical difficulties that we need to be able to deal with:

– Not only do we have to decide on variables in the right order, but we have to
make sure that no other unexpected (and unwanted) propagations occur.

– In contrast to resolution, where having more clauses at your disposal never
hurts, keeping too many learned clauses in the clause database can actually
hinder the CDCL search. This is also a striking contrast to [3, 30], where a
key technical lemma is precisely that having more clauses in the database
can only be helpful.

We do not know how to simulate general resolution efficiently with respect to
length and space simultaneously, even using ever so frequent restarts. And an
additional problem is that we want to know—in order to better understand basic
CDCL reasoning with unit propagation and conflict analysis—whether for the
pebbling and Tseitin formulas presented above CDCL can find efficient proofs
even without restarts. This makes our task substantially more complicated.

If we allow suitably frequent restarts, however, it is not too hard to show
that CDCL can efficiently simulate the “canonical” resolution proofs for these
formulas. To give at least some flavour of the technical arguments needed to
reason about the CDCL proof system, we conclude this section with a description
of how this result can be proven for pebbling formulas.

Pebbling Formula Upper Bound for CDCL with Restarts A pebbling
formula encodes the black pebble game played on a DAG G, where we start with
G being empty and want to finish with a pebble on the sink z. A vertex can be
pebbled if its predecessors have pebbles (vacuously true for sources), and pebbles
can always be removed. The time of a pebbling is the number of moves before z
is reached and the space is the maximum number of pebbles on vertices of G at
any point.

Resolution can simulate such pebblings by deriving, whenever a vertex w is
pebbled, the two pebble clauses w1 ∨ w2 and w1 ∨ w2 saying that the exclusive
or w1 ⊕ w2 is true, and by erasing these clauses whenever a pebble is removed.
For a source vertex the pebble clauses are already available as source axioms

12

Input: a black pebbling P
1 foreach (move,w) in P where w is not a source or the sink do
2 if move is Add then
3 HalfPebble (w, 0)
4 HalfPebble (w, 1)

5 else
6 delw1 ∨ w2

7 delw1 ∨ w2

8 PebbleSink

Fig. 3. Procedure Pebble (P)

in the formula (see Figure 1b), and it is not hard to show that resolution can
efficiently propagate exclusive ors from predecessors to successors. Once pebble
clauses have been derived for the sink z, contradiction immediately follows from
the sink axioms.

We want to mimic this in CDCL as described in the algorithm Pebble in
Figure 3 producing a CDCL trace. For a pebble placement, we want to learn first
w1 ∨ w2, corresponding to “half of the pebble” on w, and then w1 ∨ w2. How to
do this is described in the procedure HalfPebble in Figure 4, where the notation
xb for b ∈ {0, 1} is used as a compact way of denoting x1 = x and x0 = x.

When a pebble is placed on w in the pebbling, we let the CDCL solver make
the decisions (w1 =0/d, w2 =0/d) with the goal of learning w1 ∨ w2. Then we
decide values for the variables of the predecessors u and v of w, and since there
are clauses in memory encoding u1 ⊕ u2 and v1 ⊕ v2 this will provoke repeated
conflicts until finally the clause w1 ∨ w2 is learned. Since this only involves a
constant number of variables, the time and space required for this is constant,
and our goal can be achieved, e.g., as described in FindConflicts in Figure 5.

But now we run into problems. At this point the CDCL solver will backjump
to the decision w1 = 0, where the learned clause w1 ∨ w2 asserts w2 = 1. As the
next step, we want to generate conflicts that lead to the “second half” of the
pebble w1 ∨ w2 being learned, but there is no way this can happen since the
decision w1 = 0 is on the trail and the clause w1 ∨w2 is thus satisfied. Moreover,
if the solver is not allowed to restart, then this satisfying assignment is fixed on
the trail, and no new conflict could possibly cause a backjump to before this
assignment. Therefore, the solver is forced to continue the proof search elsewhere.
This turns out to be a major obstacle, which we are able to circumvent only by
substantial extra work involving reordering the pebbling and using a different
algorithm. Unfortunately the technical arguments are rather intricate and the
algorithm too long to describe; we refer to the full-length version for the details.

If we instead give the solver the option to restart at this point, it can clear
the trail and also forget all unnecessary clauses. This means that the decisions
(w1 =1/d, w2 =1/d) can be made, after which the clause w1 ∨ w2 is learned in

13

Input: A vertex w, a Boolean b
1 Decide w1 =b/d
2 Decide w2 =b/d
3 FindConflicts (w, b)

4 Learn w1−b
1 ∨ w1−b

2 and assert w2 =1− b/u
5 Restart R
6 foreach clause C ∈ D \ F such that |C| > 2 do
7 delC

Fig. 4. Procedure HalfPebble (w, b)

Input: A vertex w with predecessors u and v, a Boolean b
1 Decide u1 =0/d
2 Propagate u2 =1/u1 ∨ u2

3 Decide v1 =0/d

4 Learn w1−b
1 ∨ w1−b

2 ∨ u1 ∨ u2 ∨ v1
5 Assert v1 =1/w1−b

1 ∨ w1−b
2 ∨ u1 ∨ u2 ∨ v1

6 Learn w1−b
1 ∨ w1−b

2 ∨ u1

7 Assert u1 =1/w1−b
1 ∨ w1−b

2 ∨ u1

8 Propagate u2 =0/u1 ∨ u2

9 Decide v1 =0/d

10 Learn w1−b
1 ∨ w1−b

2 ∨ u1 ∨ u2 ∨ v1
11 Assert v1 =1/w1−b

1 ∨ w1−b
2 ∨ u1 ∨ u2 ∨ v1

Fig. 5. Procedure FindConflicts (w, b)

the same way as above. To conclude, we again trigger a restart and erase all
auxiliary clauses that are no longer needed.

Pebble removals are very straightforward to simulate: the only condition that
could stop us from erasing the clauses w1 ∨w2 and w1 ∨w2 is if they are reasons
for propagated literals on the trail, but since we have just made a restart the
trail is empty. Formalizing the arguments above, we obtain the following lemma.

Lemma 5. If P is a black pebbling of G in space s and time τ , then there is a
CDCL proof of Peb⊕G with restarts using the 1UIP learning scheme and any unit
propagation scheme in space at most 2s+ 3 and time O(τ).

Proof. Given a pebbling P we generate a trace as described by the procedure
Pebble. Note that this procedure maintains the invariant that the pebble clauses
for a non-source vertex w are in the clause database if and only if there is a
pebble on w. No other clauses are in memory. The space bound follows from this
invariant, and the time bound holds by construction.

It remains to check that the trace thus generated is legal. Observe that the
clauses in memory only propagate if at least one variable from each vertex they

14

mention is set. Since the decision sequence mentions at most three vertices at
the same time, we only need to reason about clauses that mention these vertices.

The correctness of FindConflicts is straightforward to verify, since the order
of unit propagations can be seen to be uniquely determined. At the end of
FindConflicts, the assignments to w1 and w2 are decisions and all predecessor
variables u1, u2, v1, v2 are set by unit propagation. Since one of the conflicting
clauses, a pebbling axiom, contains the decision variables w1 and w2, they have
to appear in any conflict clause. The remaining variables involved in the conflict
have maximal decision level, so they cannot appear in an asserting clause because
w2 already appears. Therefore, we learn the clause w1−b

1 ∨ w1−b
2 and assert

w2 =1− b/u. We only erase clauses after a restart, so no erased clauses can be
reasons for unit propagations. This concludes the proof.

4 Concluding Remarks

In this paper, we present a proof system that closely models conflict-driven clause
learning (CDCL) and yields natural measures not only of running time but also
of memory usage and number of restarts. To the best of our knowledge, previous
papers considered either zero restarts or very frequent restarts, and none of the
models captured space. We show that lower bounds on proof size and space
in resolution carry over to this CDCL proof system. Furthermore, we establish
that currently known trade-offs between size and space in resolution can be
transformed into essentially equally strong trade-offs between time and memory
usage for CDCL, where the upper bounds are achieved by CDCL without any
restarts using the standard 1UIP clause learning scheme, and the lower bounds
apply even for arbitrarily frequent restarts and arbitrary clause learning schemes.

The focus of our work is theoretical, namely to see if CDCL proof search is
in principle subject to the kind of trade-offs shown previously for the resolution
proof system in which it searches for proofs. Since the answer turns out to be yes,
an interesting direction for future work would be to investigate experimentally
whether anything like these time-space trade-offs show up also in practice.

Two other interesting problems are whether CDCL with 1UIP can simulate
general resolution efficiently with respect to both time and space (measuring time
only, a polynomial simulation follows from [30]), and whether CDCL with 1UIP
and without restarts can simulate or be separated from regular resolution. If one
believes that a separation should be more likely, a first step could be to revisit
the formulas in [17, 19] and study them in our model, which is much closer to
actual CDCL search and where proving lower bounds might therefore be easier.
It should be said, though, that both of these problems still look like formidable
challenges.

A more specialized question along the same lines, but still quite intriguing, is
what can be said if VSIDS and phase saving is plugged into our CDCL model.
The VSIDS heuristic seems like an important part of what makes CDCL SAT
solvers so successful in practice, and yet there are also theoretical combinatorial
formulas where it seems to be less useful. It would be interesting if one could find

15

explicit examples of formulas where VSIDS in combination with phase saving
goes provably wrong compared to the best possible resolution proof, causing a
large polynomial or even superpolynomial blow-up in proof size.

Acknowledgements We are grateful to the anonymous SAT conference review-
ers for detailed comments that helped improve the exposition in this paper.

The third author performed this work while at KTH Royal Institute of
Technology, and most of the work of the second and fourth author was done while
visiting KTH. The first, third, fifth, and sixth author were funded by the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement no. 279611 as well as by Swedish
Research Council grant 621-2012-5645. The third author was also supported
by the European Research Council under the European Union’s Horizon 2020
Research and Innovation Programme / ERC grant agreement no. 648276.

References

[1] Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity
in propositional calculus. SIAM Journal on Computing 31(4), 1184–1211 (2002),
preliminary version in STOC ’00

[2] Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is
tractable. SIAM Journal on Computing 38(4), 1347–1363 (Oct 2008), preliminary
version in FOCS ’01

[3] Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. Journal of Artificial Intelligence Research
40, 353–373 (Jan 2011), preliminary version in SAT ’09

[4] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI ’09). pp. 399–404 (Jul 2009)

[5] Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97). pp. 203–208 (Jul 1997)

[6] Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: Super-
polynomial lower bounds for superlinear space. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC ’12). pp. 213–232 (May 2012)

[7] Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351
(Dec 2004), preliminary version in IJCAI ’03

[8] Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing
can efficiently simulate resolution. In: Proceedings of the 28th National Conference
on Artificial Intelligence (AAAI ’14). pp. 2608–2615. AAAI Press (Jul 2014)

[9] Beck, C., Nordström, J., Tang, B.: Some trade-off results for polynomial calculus.
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13). pp. 813–822 (May 2013)

[10] Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution.
Random Structures and Algorithms 23(1), 92–109 (Aug 2003), preliminary version
in CCC ’01

16

[11] Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separa-
tions and trade-offs via substitutions. In: Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS ’11). pp. 401–416 (Jan 2011)

[12] Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
Journal of the ACM 48(2), 149–169 (Mar 2001), preliminary version in STOC ’99

[13] Bennett, P., Bonacina, I., Galesi, N., Huynh, T., Molloy, M., Wollan, P.: Space
proof complexity for random 3-CNFs. Tech. Rep. 1503.01613, arXiv.org (Apr 2015)

[14] Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

[15] Bonacina, I.: Total space in resolution is at least width squared. In: Proceedings
of the 43rd International Colloquium on Automata, Languages and Programming
(ICALP ’16) (Jul 2016), to appear

[16] Bonacina, I., Galesi, N., Thapen, N.: Total space in resolution. In: Proceed-
ings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’14). pp. 641–650 (Oct 2014)

[17] Bonet, M.L., Buss, S., Johannsen, J.: Improved separations of regular resolution
from clause learning proof systems. Journal of Artificial Intelligence Research 49,
669–703 (2014)

[18] Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL-algorithms with clause learning. Logical
Methods in Computer Science 4(4:13) (Dec 2008)

[19] Buss, S.R., Ko lodziejczyk, L.: Small stone in pool. Logical Methods in Computer
Science 10 (Jun 2014)

[20] Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the
ACM 35(4), 759–768 (Oct 1988)

[21] Cook, S.A., Reckhow, R.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1), 36–50 (Mar 1979)

[22] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (Jul 1962)

[23] Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

[24] Esteban, J.L., Torán, J.: Space bounds for resolution. Information and Computation
171(1), 84–97 (2001), preliminary versions of these results appeared in STACS ’99
and CSL ’99

[25] Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3),
297–308 (Aug 1985)

[26] Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
P-simulate general propositional resolution. In: Proceedings of the 23rd National
Conference on Artificial Intelligence (AAAI ’08). pp. 283–290 (Jul 2008)

[27] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (May 1999),
preliminary version in ICCAD ’96

[28] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC ’01). pp. 530–535 (Jun 2001)

[29] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

[30] Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175, 512–525 (Feb 2011), preliminary
version in CP ’09

17

[31] Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(Jan 1987)

[32] Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’05). Lecture Notes
in Computer Science, vol. 3835, pp. 580–594. Springer (2005)

[33] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD ’01). pp. 279–285 (Nov
2001)

18

