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Abstract

We study the performance of DPLL algorithms on parameterized prob-
lems. In particular, we investigate how difficult it is to decide whether
small solutions exist for satisfiability and other combinatorial problems.
For this purpose we develop a Prover-Delayer game which models the run-
ning time of DPLL procedures and we establish an information-theoretic
method to obtain lower bounds to the running time of parameterized
DPLL procedures. We illustrate this technique by showing lower bounds
to the parameterized pigeonhole principle and to the ordering principle.
As our main application we study the DPLL procedure for the problem
of deciding whether a graph has a small clique. We show that proving the
absence of a k-clique requires nΩ(k) steps for a non-trivial distribution of
graphs close to the critical threshold. For the restricted case of tree-like
Parameterized Resolution, this result answers a question asked in [16] of
understanding the Resolution complexity of this family of formulas.
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1 Introduction

Resolution was introduced by Blake [17] and since the work of Robinson [38]
and Davis, Putnam, Logemann, and Loveland [26,27] has been highly employed
in proof search and automated theorem proving. In the last years, the study
of Resolution has gained great significance in at least two important fields of
computer science. (1) Proof complexity, where Resolution is one of the most
intensively investigated proof systems [2,8,11,18,22,34,44]. The study of lower
bounds for proof length in this system has opened the way to lower bounds in
much stronger proof systems [9,42]. (2) Algorithms for the satisfiability problem
of CNF formulas, where the DPLL algorithm [6, 26] was at the core of the
most important algorithms employed for the satisfiability problem [6], until
the discovery of conflict driven clause learning solvers [7]. Running DPLL on
unsatisfiable formulas produces Resolution refutations in the simple form of
a tree, thus Resolution proof lengths are connected with the running time of
DPLL procedures.

Parameterized Resolution was recently introduced by Dantchev, Martin, and
Szeider [24] in the context of parameterized proof complexity, an extension of the
proof complexity approach of Cook and Reckhow [23] to parameterized complex-
ity. Analogously to the case of Fixed Parameter Tractable (FPT) algorithms
for optimization problems, the study of Parameterized Resolution provides new
approaches and insights to proof search and to proof complexity. Loosely speak-
ing, to refute a parameterized contradiction (F, k) in Parameterized Resolution
we have built-in access to new axioms, which encode some property on assign-
ments. In the most common case the new axioms are the clauses forbidding
assignments of hamming weight greater than k. We underline that only those
axioms appearing in the proof account for the proof length. Hence Parameter-
ized DPLL refutations can be viewed as traces of executions of a (standard)
DPLL algorithm in which some branches are cut because they falsify one of the
new axioms.

In spite of its recent introduction, research in this direction is already active.
Gao [33] analyzes the effect of the standard DPLL algorithm on the problem
of weighted satisfiability for random d-CNFs. Beyersdorff et al. [15], using an
idea also developed in [21], proved that there are FPT efficient Parameterized
Resolution proofs for all bounded-width unsatisfiable CNF formulae.

As our first contribution, we look inside the structure of Parameterized
DPLL giving a new information-theoretical characterization of proofs in terms
of a two-player game, the Asymmetric Prover-Delayer (APD) game. The APD-
game was also used in [13] to prove simplified optimal lower bounds for the pi-
geonhole principle in tree-like classical Resolution. Compared to [13] we present
here a completely different analysis of APD-games based on an information-
theoretical argument which is new and interesting by itself.

Parameterized Resolution is also a refutational proof system for parameter-
ized contradictions. Hence proving proof length lower bounds for parameterized
contradictions is important in order to understand the strength of such a proof
system. Dantchev et al. [24] proved significant lower bounds for Parameterized
DPLL proofs of the pigeonhole principle (PHP) and of the ordering principle
(OP). Moreover, recently the work [15] extended the PHP lower bounds to the
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case of parameterized dag-like bounded-depth Frege.1

As our second contribution we provide a unified approach to get lower bounds
in Parameterized DPLL using the APD-game. As a simple application of our
characterization, we give an improvement on the lower bounds given in [24] for
both PHP and OP.

It is a natural question what happens when we equip a proof system with
a more efficient way of encoding the exclusion of assignments with hamming
weight ≥ k, rather than just adding all possible clauses with k+ 1 negated vari-
ables. Dantchev et al. [24] proved that this is a relevant issue. They presented
a different and more efficient encoding, and showed that under this encoding
PHP admits efficient FPT Parameterized Resolution proofs.

In the recent work [15] the authors investigate this question further and
notice that for propositional encodings of prominent combinatorial problems
like k-independent set or k-clique, the separation between the two encodings
vanishes. Hence they proposed (see Question 5 in [15]) to study the performance
of Parameterized Resolution on CNF encodings of such combinatorial problems
and in particular to prove lower bounds. This will capture the real proof-
theoretic strength of Parameterized Resolution, since it is independent of the
encodings. The k-clique principle (see also [5, 15] for similar principles) simply
says that a given graph contains a clique of size k. When applied on a graph
not containing a k-clique it is a contradiction.

As a third contribution, we prove significant lower bounds for the k-clique
principle in the case of Parameterized DPLL. Our k-clique formula is based
on random graphs distributed according to a simple variation of the Erdős-
Rényi model G(n, p). It is well known [35, Chapter 3] that when G is drawn

according to G(n, p) and p � n−
2
k−1 , with high probability G has no k-clique.

We introduce a canonical CNF Clique(G, k) expressing this fact and show that
with high probability these formulas are hard for Parameterized DPLL.

For the canonical graphs with no k-clique, i. e., the (k− 1)-partite complete
graph, we show that the same principle admits fixed parameterized tractable
refutations in dag-like Resolution, but not in tree-like. As an open problem it
remains whether this is the case also for the random graphs above.

The paper is organized as follows. Section 2 contains all preliminary notions
and definitions concerning fixed-parameter tractability, parameterized proof sys-
tems, and Parameterized Resolution. In Section 3 we define the asymmetric
Prover-Delayer game and establish its precise relation to the proof size in tree-
like Parameterized Resolution. In Section 4 we show example applications for
the APD-game: we give tree-like Parameterized Resolution lower bounds for
the pigeonhole principle and for an ordering principle. Our bounds improve the
ones that follows from the model theoretic criteria in [24].

In Section 5 we introduce the formula Clique(G, k) which is satisfiable if
and only if there is a k-clique in the graph G and we show that on a certain
distribution of random graphs the following holds with high probability: G has
no k-clique and the size of the shortest refutation of Clique(G, k) is nΩ(k). From
an algorithmic perspective, this result can be formulated as: any algorithm for
k-clique which (i) cleverly selects a vertex and branches on whether it is in the

1The APD-game appeared also in the technical report [12], together with a lower bound for
dag-like Parameterized Resolution, but all results in [12] are subsumed and improved by [15]
and the present paper.
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clique or not, (ii) deletes all its non-neighbors, and (iii) stops branching when
there are no vertices left, must use at least nΩ(k) steps for most random graphs
with a certain edge probability.

2 Preliminaries

Parameterized complexity is a branch of complexity theory where problems are
analyzed in a finer way than in the classical approach: instead of expressing
the complexity of a problem as a function only of the input size there is an
extra parameter which is part of the input, and one investigates the effect of
the parameter on the complexity. We say that a problem is fixed-parameter
tractable (FPT) with parameter k if it can be solved in time f(k)nO(1) for
some computable function f of arbitrary growth. In this setting classically
intractable problems may have efficient solutions, assuming the parameter is
small, even if the total size of the input is large. Parameterized complexity
also has a completeness theory: many parameterized problems that appear not
to be fixed-parameter tractable have been classified as being complete under
fixed-parameter tractable reductions for the complexity classes in the so-called
weft hierarchy W[1] ⊆ W[2] ⊆ W[3] ⊆ . . . Parameterized complexity is a rich
and informative theory, and we suggest the monographs [28, 32, 36] for further
reading about FPT and the weft hierarchy.

Consider the problem Bounded CNF Sat of deciding whether there is a
satisfying assignment of Hamming weight at most k for a formula in conjunctive
normal form.2 Many parameterized combinatorial problems can be naturally
encoded in Bounded CNF Sat: finding a vertex cover of size at most k; finding
a clique of size at least k; or finding a dominating set of size at most k. In the
theory of parameterized complexity, the hardness of the Bounded CNF Sat
problem is reflected by the fact that it is W[2]-complete (see [15,24]).

Dantchev, Martin, and Szeider [24] initiated the study of parameterized proof
complexity. After considering the notions of propositional parameterized tautolo-
gies and fpt-bounded proof systems, they laid the foundations for the study of
complexity of proofs in a parameterized setting. The problem Bounded CNF
Sat leads to parameterized contradictions:

Definition 1 (Dantchev et al. [24]). A parameterized contradiction is a pair
(F, k) consisting of a propositional formula F in CNF and k ∈ N such that F
has no satisfying assignment of weight ≤ k.

Here we focus on parameterized contradictions (F, k) where F is already
unsatisfiable. We also study proof complexity for showing that a graph has
no clique of size k, when in fact it does not contain any. The latter is an
example in which the parameterization is implicit in the formula F itself. It is
natural to also consider the case of parameterized contradictions (F, k) where F
is satisfiable by assignments of weight greater than k; this case is ignored here,
but some observations in this direction are made in [15].

The notions of a parameterized proof system and of fpt-bounded proof sys-
tems were also developed in [24]:

2Compare Bounded CNF Sat to the canonical Weighted CNF Sat problem, which asks
for assignments of weight exactly k. The latter is also W[2]-complete (see [32]) and is more
common in the parameterized complexity literature.
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Definition 2 (Dantchev et al. [24]). A parameterized proof system for a pa-
rameterized language L ⊆ Σ∗ ×N is a function P : Σ∗ ×N→ Σ∗ ×N such that
rng(P ) = L and P (x, k) can be computed in time O(f(k)|x|O(1)) for some com-
putable function f . The system P is fpt-bounded if there exist computable func-
tions s and t such for that every (x, k) ∈ L there is (y, k′) with P (y, k′) = (x, k),
|y| ≤ s(k)|x|O(1) and k′ ≤ t(k).

A proof can be padded in order to ensure polynomial runtime, thus the
original definition of parameterized proof systems can be simplified as follows:

Definition (alternative to Definition 2 suggested in [15]). A parameterized
proof system for a parameterized language L ⊆ Σ∗ × N is a polynomial-time
computable function P : Σ∗ → Σ∗ × N such that rng(P ) = L. The system
P is fpt-bounded if there exists a computable function f such that for every
(x, k) ∈ L there exists a proof y of size at most f(k)|x|O(1) with f(y) = (x, k).

The main motivation behind the work of [24] was that of generalizing the
classical approach of Cook and Reckhow [23] to the parameterized case and
working towards a separation of parameterized complexity classes by techniques
developed in proof complexity.3

2.1 Parameterized Resolution and Parameterized DPLL

A literal is a positive or negated propositional variable and a clause is a set of
literals, interpreted as their disjunction. The width of a clause is the number
of its literals. A formula in conjunctive normal form (CNF) is a set of clauses,
interpreted as their conjunction. The Resolution system is a refutation system
for the set of all unsatisfiable CNF. Resolution gets its name from its only rule,
the Resolution rule

{x} ∪ C {¬x} ∪D
C ∪D

for clauses C,D and a variable x. The aim in Resolution is to demonstrate
unsatisfiability of a clause set by deriving the empty clause from them. A Res-
olution refutation can be associated with directed acyclic graph where clauses
in the refutation correspond to nodes and each inference C D

E gives rise to two
edges (C,E) and (D,E). If this graph associated with the refutation is a tree,
then the refutation is called called tree-like, otherwise it is called dag-like. In a
tree-like refutation any non-initial clause which is needed more than once must
be rederived from scratch. The size of a Resolution proof is the number of its
clauses where multiple occurrences of the same clause are counted separately.
Undoubtedly, Resolution is the most studied and best-understood propositional
proof system (cf. [41]).

For the remaining part of this paper we will concentrate on Parameterized
Resolution as introduced by Dantchev, Martin, and Szeider [24]. Parameterized
Resolution is a refutation system for the set of parameterized contradictions (cf.

3In fact, there are several Cook-type programs that can be associated with showing lower
bounds for parameterized proof systems. The first paper of Dantchev, Martin and Szeider [24]
targets at FPT vs. W[2]. By giving a more general version of Definition 1 allowing arbitrary
formulas F not necessarily in CNF, the journal version [25] recasts this as FPT vs. W[SAT].
In [15] it is pointed out that a parameterized language L has an fpt-bounded proof system if
and only if L is in para-NP, and hence we are aiming at a separation of coW[2] and para-NP
(implying FPT 6= W[2]).
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Definition 1). Given a set of clauses F in variables x1, . . . , xn, a Parameterized
Resolution refutation of (F, k) is a Resolution refutation of

F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1
| 1 ≤ i1 < · · · < ik+1 ≤ n} .

Thus, in Parameterized Resolution we have built-in access to all parameterized
clauses of the form ¬xi1 ∨ · · · ∨ ¬xik+1

. All these clauses are available in the
system, but when measuring the size of a refutation we only count those which
occur in the refutation.

If refutations are tree-like we speak of tree-like Parameterized Resolution.
Running parameterized DPLL procedures on parameterized contradictions pro-
duces tree-like Parameterized Resolution refutations, thus tree-like Resolution
proof lengths are connected with the running time of DPLL procedures. Exactly
as in usual tree-like Resolution, a tree-like Parameterized refutation of (F, k) can
equivalently be described as a boolean decision tree where inner nodes are la-
beled with variables from F and leaves are labeled either with clauses from F
or with parameterized clauses ¬xi1 ∨ · · · ∨ ¬xik+1

. Each path in the tree corre-
sponds to a partial assignment where a variable x gets value 0 or 1 according
to whether the path branches left or right at the node labeled with x. The
condition on the decision tree is that each path α must lead to a clause which
is falsified by the assignment corresponding to α. Therefore, a boolean decision
tree solves the search problem for (F, k) which, given an assignment α, asks for
a clause falsified by α. It is easy to verify that each tree-like Parameterized
Resolution refutation of (F, k) yields a boolean decision tree for (F, k) and vice
versa, where the size of the Resolution proof equals the number of nodes in the
decision tree (cf. [10]).

3 Asymmetric Prover-Delayer Games for DPLL
Refutations

The original Prover-Delayer game for tree-like Resolution has been developed
by Pudlák and Impagliazzo [37]. In the game, Prover queries a variable and
Delayer either gives it a value or leaves the decision to Prover and receives one
point. The number of Delayer’s points at the end of the game bounds from
below the height of the proof tree.

This game has also been studied in [31], where it is proved that the clause
space complexity of a formula in tree-like Resolution is two plus the largest
number of points achievable by the Delayer. Then the lower bound for the
proof length follows from the fact that a formula with clause space complexity
s requires proof length at least 2s−1 (see [30]). This connection to clause space
complexity limits the strength of the method, since there are formulas for which
the above lower bound is not tight (e.g. the classical pigeonhole principle). This
is so because the clause space complexity of a formula F is s if and only if any
proof tree for F contains a complete binary tree of height s. The gap between
the size of this minor and the size of the proof tree is exactly what the original
game fails to analyze.

The game used here, in contrast, assigns points to the Delayer asymmetri-
cally (log2 c0 and log2 c1) according to two functions c0 and c1 (s.t. c−1

0 + c−1
1 =

1) which depend on the principle, the variable queried, and the current partial

6



assignment. In fact, the original Prover-Delayer game of [37] is the case where
c0 = c1 = 2.

Loosely speaking, we interpret the inverse of the score functions as a way to
define a distribution on the choices made by the DPLL algorithm. Under this
view the Delayer’s score at each step is just the entropy of the bit encoding the
corresponding choice. Since root-to-leaf paths are in bijection with leaves, this
process induces a distribution on the leaves. Hence the entropy collected on
the path is the entropy of the corresponding leaf choice. In this interpretation,
the asymmetric Prover-Delayer game becomes a challenge between Prover, who
wants to end the game giving up little entropy, and Delayer, who wants to get a
lot of it. This means that the average score of the Delayer is a measure (actually
a lower bound) of the number of leaves. In our setup the DPLL algorithm decides
the Prover queries, and the score function defines the distribution on paths. The
role of the Delayer corresponds to a conditioning on this distribution.

We now describe the details of the game; in the following we intend all
logarithms to be in base 2. Let (F, k) be a parameterized contradiction where
F is a set of clauses in n variables x1, . . . , xn. We define a Prover-Delayer
game: Prover and Delayer build a (partial) assignment to x1, . . . , xn. The game
is over as soon as the partial assignment falsifies either a clause from F or a
parameterized clause ¬xi1 ∨ · · · ∨ ¬xik+1

where 1 ≤ i1 < · · · < ik+1 ≤ n. The
game proceeds in rounds. In each round, Prover suggests a variable xi, and
Delayer either chooses a value 0 or 1 for xi or leaves the choice to the Prover. In
this last case the Prover sets the value and the Delayer gets some points. The
number of points Delayer earns depends on the variable xi, the assignment α
constructed so far in the game, and two functions c0 and c1. More precisely, the
number of points that Delayer will get is

0 if Delayer chooses the value,
log c0(xi, α) if Prover sets xi to 0, and
log c1(xi, α) if Prover sets xi to 1.

Moreover, the functions c0 and c1 are non negative and are chosen in such a
way that for each variable x and assignment α

1

c0(x, α)
+

1

c1(x, α)
= 1 (1)

holds. We remark that (1) is not strictly necessary for all α and x, but it must
hold at least for those assignments α and choices x of the Delayer that can
actually occur in any game with the Delayer strategy. We call this game the
(c0, c1)-game on (F, k). The connection of this game to size of proofs in tree-like
Parameterized Resolution is given by the next theorem:

Theorem 3 (see [12, 13]). Let (F, k) be a parameterized contradiction and let
c0 and c1 be two functions satisfying (1) for all partial assignments α to the
variables of F . If (F, k) has a tree-like Parameterized Resolution refutation of
size at most S, then for each (c0, c1)-game played on (F, k) there is a Prover
strategy (possibly dependent on the Delayer) that gives the Delayer at most logS
points.

Proof. Let (F, k) be a parameterized contradiction using variables x1, . . . , xn.
Choose any tree-like Parameterized Resolution refutation of (F, k) of size S and
interpret it as a boolean decision tree T for F .
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The decision tree T completely specifies the query strategy for Prover: at the
first step he will query the variable labeling the root of T . Whatever decision
is made regarding the value of the queried variable, Prover moves to the root of
the corresponding subtree and queries the variable which labels it. This process
induces a root-to-leaf walk on T , and such walks are in bijection with the set of
leafs.

To completely specify Prover’s strategy we need to explain how Prover
chooses the value of the queried variable in case Delayer asks him to. The
Prover is deterministic, but for the sake of this proof he will choose the answers
at random: on average the Delayer score will be low enough to allow an easy
derandomization of Prover’s choices. A game position is completely described
by the partial assignment α computed so far, and by the variable x 6∈ dom(α)
queried at that moment. If the Prover is asked to answer the query for x, the
answer will be: {

0 with probability 1
c0(x,α)

1 with probability 1
c1(x,α) .

Thus we are dealing with a randomized Prover strategy. In a game played
between our randomized Prover and a specific Delayer D, we denote by pD,`
the probability of such a game to end at a leaf `. We call πD this distribution
on the leaves. To prove the theorem the following observation is crucial:

If the game ends at leaf `, then Delayer D scores exactly log 1
pD,`

points.

Before proving this claim, we show that it implies the theorem. The expected
score of a Delayer D is

H(πD) =
∑
`

pD,` log
1

pD,`

which is the information-theoretic entropy of πD. Since the support of πD has
size at most S, we obtain H(πD) ≤ logS, because the entropy is maximized by
the uniform distribution. By fixing the random choices of the Prover, we can
force Delayer D to score at most logS points.

To prove the claim consider a leaf ` and the unique path that reaches it.
W. l. o. g. we assume that this path corresponds to the ordered sequence of
assignments x1 = ε1, . . . , xm = εm. The probability of reaching the leaf is

pD,` = p1p2 · · · pm

where pi is the probability of setting xi = εi conditioned on the previous choices.
If Prover chooses the value of the variable xi, the score Delayer D gets at step
i is

log cεi(xi, {x1 = ε1, x2 = ε2, . . . , xi−1 = εi−1})
which is exactly log 1

pi
. If Delayer makes the choice at step i, then pi = 1 and

the score is 0, which is also log 1
pi

. Thus the score of the game play is

m∑
i=1

log
1

pi
= log

1∏m
i=1 pi

= log
1

pD,`
,

and this concludes the proof of the claim and the theorem.
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Notice that by setting c0(x, α) = c1(x, α) = 2 for all variables x and partial
assignments α, we get the game of Pudlák and Impagliazzo [37]. Proving lower
bounds in our new game, i. e., devising good Delayer strategies, entails first of all
to finding suitable functions c0 and c1. Functions c0 and c1 can be interpreted
in terms of information content of tree-like Resolution refutations. The points
which Delayer scores in one round should be proportional to the fraction of the
current refutation that Prover can avoid to check by deciding a value for the
variable. This is easily understandable in the case of the original game: the
only good strategy for Prover to set a variable is choosing the value that allows
him to proceed the game in the smallest of the two sub-trees of the current
refutation which is in fact of size smaller than 1/2 of the current refutation size.

4 Two Applications of the Lower BoundMethod

In this section we show that parameterized contradictions based on the pigeon-
hole principle and on the ordering principle have lower bounds nk(1−o(1)) and

n
√
k(1−o(1)), respectively. The main result of [24] already implies a weaker lower

bound of nk
Ω(1)

for both formulas, and our results improve on that. It is inter-
esting to remark that an nk/5 dag-like Parameterized Resolution lower bound
for the pigeonhole principle is known from [15].

We now focus on the pigeonhole principle PHPn+1
n . Variable xi,j for i ∈

[n+ 1] and j ∈ [n] indicates that pigeon i goes into hole j. PHPn+1
n consists of

the clauses ∨
j∈[n]

xi,j for all pigeons i ∈ [n+ 1]

and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n + 1] and holes
j ∈ [n]. We prove that PHPn+1

n is hard for tree-like Parameterized Resolution.4

Theorem 4. Any tree-like Parameterized Resolution refutation of (PHPn+1
n , k)

has size nk(1−o(1)).

Proof. Let α be a partial assignment to the variables {xi,j | i ∈ [n+ 1], j ∈ [n]}.
Let zi(α) = |{j ∈ [n] | α(xi,j) = 0}|, i. e., zi(α) is the number of holes already
excluded by α for pigeon i (disregarding holes occupied by other pigeons). We
define

c0(xi,j , α) =
n− zi(α)

n− zi(α)− 1
and c1(xi,j , α) = n− zi(α)

which clearly satisfies (1). We now describe Delayer’s strategy in a (c0, c1)-game
played on (PHPn+1

n , k). If Prover asks for a value of xi,j , then Delayer decides
as follows:

set α(xi,j) = 0 if there exists i′ ∈ [n+ 1] \ {i} such that α(xi′,j) = 1 or
if there exists j′ ∈ [n] \ {j} such that α(xi,j′) = 1

set α(xi,j) = 1 if there is no j′ ∈ [n] with α(xi,j′) = 1 and zi(α) ≥ n− k
let Prover decide otherwise.

4In Theorem 4 and all following lower bounds it is implicitly understood that k is a fixed
constant and n is sufficiently large with respect to k. This is the usual view adopted in
parameterized complexity.
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Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not
already sit in a hole, there are at least k holes free for pigeon i, and there is
no other pigeon sitting already in hole j. If Delayer uses this strategy, then
clauses from PHPn+1

n will not be violated in the game, i. e., a contradiction will
always be reached on some parameterized clause. To verify this claim, let α be a
partial assignment constructed during the game with w(α) ≤ k (we denote the
the weight of α by w(α)). Then, for every pigeon which has not been assigned
to a hole yet, there are at least k holes where it could go, and only w(α) of these
are already occupied by other pigeons. Thus α can be extended to a one-one
mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k+ 1 variables have been set to 1.
Let us denote by p the number of variables set to 1 by Prover and let d be the
number of 1’s assigned by Delayer. As argued before p+d = k+1. Let us check
how many points Delayer earns in this game. If Delayer assigns 1 to a variable
xi,j , then pigeon i was not assigned to a hole yet and, moreover, there must be
n− k holes which are already excluded for pigeon i by α, i. e., for some J ⊆ [n]
with |J | = n− k we have α(xi,j′) = 0 for all j′ ∈ J . Most of these 0’s have been
assigned by Prover, as Delayer has only assigned a 0 to xi,j′ when some other
pigeon was already sitting in hole j′, and there can be at most k such holes.
Thus, before Delayer sets α(xi,j) = 1, she has already earned points for at least
n− 2k variables xi,j′ , j

′ ∈ J , yielding at least

n−2k−1∑
z=0

log
n− z

n− z − 1
= log

n−2k−1∏
z=0

n− z
n− z − 1

= log
n

2k
= log n− log 2k

points for the Delayer. Note that because Delayer never allows a pigeon to go
into more than one hole, she will earn at least the number of points calculated
above for each of the d variables which she sets to 1.

If, conversely, Prover sets variable xi,j to 1, then Delayer gets log(n− zi(α))
points for this, but she also receives points for most of the zi(α) variables set to
0 before that. Thus, in this case Delayer earns on pigeon i at least

log(n− zi(α)) +

zi(α)−k−1∑
z=0

log
n− z

n− z − 1

= log(n− zi(α)) + log
n

n− zi(α) + k

= log n− log
n− zi(α) + k

n− zi(α)

≥ log n− log k

points. In total, Delayer gets at least

d(log n− log 2k) + p(log n− log k) ≥ k(log n− log 2k)

points in the game. By Theorem 3, we obtain ( n2k )
k

as a lower bound to the

size of each tree-like Parameterized Resolution refutation of (PHPn+1
n , k).

In the above Delayer strategy we never associate a pigeon to more than
one hole. For this reason the lower bound from Theorem 4 also holds for the
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functional pigeonhole principle where in addition to the clauses from PHPn+1
n

we also include ¬xi,j1 ∨ ¬xi,j2 for all pigeons i ∈ [n + 1] and distinct holes
j1, j2 ∈ [n]. The Prover can easily force a Delayer to a partial assignment in
which a hole does not receive any pigeon, so the proof does not work for the
bijective pigeonhole principle, where all holes must host some pigeon.

As a second example we discuss the DPLL performance on the parameterized
ordering principle OP , also called least element principle. The principle claims
that any finite partially ordered set has a minimal element. There is a direct
propositional translation of OP to a family OPn of unsatisfiable CNFs. Each
CNF OPn expresses that there exists a partially ordered set of size n such that
any element has a predecessor. The ordering principle has the following clauses:

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)

¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)∨
j∈[n]\{i}

xj,i for every i (Predecessor)

With respect to parameterization the ordering principles are interesting.
Both OP and the linear ordering principle (LOP), which additionally assumes
the order to be total, do not admit short tree-like Resolution refutations [19] and
have general Resolution refutations of polynomial size [43]. In the parameter-
ized setting things are different: LOP has short tree-like refutations (see [15])
while OP does not and provides a separation between tree-like and dag-like
Parameterized Resolution.

Theorem 5. Any tree-like Parameterized Resolution refutation of (OPn, k) has

size n
√
k(1−o(1)).

Proof. Let α be an assignment to the variables of OP . The Delayer will keep
the following information:

• G(α) = (V (α), E(α)) the graph obtained taking as edges the (i, j)’s such
that α(xi,j) = 1;

• G∗(α) the transitive closure of G(α) and GT (α) the transpose graph of
G(α).

In particular, for any vertex j in G(α), the Delayer considers the following
information

• zj(α) = |{i ∈ [n] | α(xi,j) is not assigned}|,

• Pred j(α) = {i ∈ [n] | α(xi,j) = 1}, and

• PPred j(α) the subset of Pred j(α) of those edges set to 1 by the Prover.

Loosely speaking the Delayer, taking as few decisions as possible, wants to
force: (1) the game to end on a parameterized clause, and (2) the Prover to
decide only one predecessor for each node. To reach the former, in some cases
she will be forced to decide a predecessor of a node j to avoid that after few
more trivial queries the game ends on a predecessor clause. To get (2) she will
be forced to say that some node can’t be predecessor of some node j. In both
cases we will prove that Delayer will keep her number of decisions bounded.

Let α be the assignment built so far in the game and let xi,j be the variable
queried by Prover. Delayer acts as follows:

11



1. if (i, j) ∈ E(α)
∗
, then she answers 1;

2. if (i, j) ∈ (E(α)
∗
)
T

, then she answers 0;

3. if |Pred j(α)| = 0 and zj(α) ≤ k + 1, then she answers 1;

4. if |PPred j(α)| ≥ 1, then she answers 0;

5. otherwise, she leaves the decision to the Prover.

To simplify the argument we assume that in the game, after each decision
by the Prover or after a decision by the Delayer according to Rule 3, the Prover

asks all variables corresponding to edges that are in G∗(α) and (G(α)
∗
)
T

but
not in G(α). This will not change our result since on these nodes Delayer does
not score any point.

Let P ε(t) be the set of edges set to ε ∈ {0, 1} by the Prover after stage t
ends. Let Dε(t) be the set of edges set to ε ∈ {0, 1} by the Delayer. Finally, let
D∗(t) ⊆ D1(t) be the set of edges set to 1 by the Delayer according to Rule 3
of her strategy. P εj (t), Dε

j(t), and D∗j (t) are the subsets of the respective sets
formed by those edges having end-node j, i. e., edges of the form (i, j) for some
i.

Let αt be the assignment built after stage t and let α∗t be the extensions of αt

obtained by assigning all edges from G∗(αt) to 1 and all edges from (G(αt)
∗
)
T

to 0. We define Nj(t) = { (i, j) | i ∈ [n], (i, j) ∈ dom(α∗t ) \ P 0(t) }.

Lemma 6. At each stage t of the game, it holds that:

1. |P 1(t)|+ |D∗(t)| ≥
√
|E(αt)|;

2. if w(αt) ≤ k and |P 1
j (t)|+ |D∗j (t)| = 0, then |Nj(t)| ≤ k;

3. if w(αt) ≤ k, then α∗t does not falsify any predecessor clause;

4. for each j ∈ [n], |D∗j (t)| ≤ 1 and |P 1
j (t)| ≤ 1.

Proof. Condition 1 follows since |P 1(t)| + |D1(t)| = |E(αt)|, and |E(αt)| ≤
|E∗(αt)| ≤ (|P 1(t)|+ |D∗(t)|)2

.
Condition 2: |P 1

j (t)| + |Dj
∗(t)| = 0 implies that the vertex j has no prede-

cessor. The only way to set a predecessor to a vertex which already has one
is by Rule 1, but a vertex without predecessors cannot get one by transitive
closure. Then an edge xi,j is in dom(α∗t ) \P 0(t) if and only if i is a successor of
j in G∗(αt). Hence there must be a directed tree rooted in j and containing all

such successors. As αt has weight at most k, G(αt)
T

contains at most k edges
and there are at most k successors of j. Therefore |Nj(t)| ≤ k.

Condition 3: consider a predecessor clause Cj which is not satisfied by αt.
Then there are at least k + 1 variables xi,j unset, since otherwise, according
to Rule 3 Delayer should have set one predecessor for j. If |P 1

j (t)| ≥ 1 or

|D∗j (t)| ≥ 1, then Cj would be satisfied. Then by |P 1
j (t)| + |D∗j (t)| = 0 and by

Condition 2 at most k additional literals of Cj are set to 0 by α∗t . The claim
follows since there is at least one unset literal in Cj .

Condition 4: the first time that a predecessor of some node j is decided in
the game is either by a decision of the Prover or by a decision of the Delayer
according to Rule 3. Since Delayer applies Rule 3 only in the case no predecessor
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has been yet decided, it follows that |D∗j (t)| ≤ 1. Moreover, by Rule 4 Delayer
prevents the Prover to set more than one predecessor for each node, hence
|P 1
j (t)| ≤ 1.

Lemma 7. After the last stage f of the game the following holds:

• a parameterized clause is falsified;

• |P 1(f)|+ |D∗(f)| ≥
√
k + 1.

Proof. For the first condition, we notice that Rules 1 and 2 in the Delayer’s
strategy guarantee that neither antisymmetry nor transitivity axioms will be
ever falsified during the game. Assuming that αf has weight strictly less then
k + 1, then by Lemma 6 (condition 3), no predecessor clause is falsified. Hence
w(αf ) = k + 1 and a parameterized clause is falsified.

The second property follows by Lemma 6 (condition 1) and by |E(αf )| ≥
w(αf ) which is equal to k + 1 because of the first part of this lemma.

Set c1(xi,j , α) = zj(α) and c0(xi,j , α) =
zj(α)
zj(α)−1 . For a given play of the

game, let ti,j be the stage of the game when the variable xi,j is set. Let scj(t)
be the number of points scored by the Delayer up to stage t for answers of the
Prover to the variables x1,j , x2,j , . . . , xn,j . Then the number of points scored by
the Delayer at the end of the game is

∑n
j=1 scj(f).

Lemma 8. The following implications hold

1. If |P 1
j (f)| = 1, then scj(f) ≥ log n− log(k + 1).

2. If |D∗j (f)| = 1, then scj(f) ≥ log n− log(2k + 1).

Proof. For the first claim, let (i, j) ∈ D∗j (f) and let ti,j be the stage when xi,j
was set. We claim that |P 0

j (ti,j)| ≥ n− (2k+ 1). W. l. o. g. we can assume that
the variables xi′,j set to 0 by the Prover are the first ones with end-node j to be
set to 0, because c0(xi′,j , α) is strictly decreasing with respect to zj(α). Hence
the Delayer gets at least

n∑
l=2k+2

log
l

l − 1
= log n− log(2k + 1)

points on variables x1,j , . . . , xn,j .
It remains to prove the claim that |P 0

j (ti,j)| ≥ n − (2k + 1). According to
Rule 3 of the strategy, there are at least n − (k + 1) variables xi′,j set to 0 in
αti,j . Hence |P 0

j (ti,j)| + |D0
j (ti,j)| ≥ n − (k + 1). Since at this stage i is the

first predecessor of j to be fixed, then the Delayer has not set variables xi′,j to
0 according to Rule 4, but only by Rule 2.

Moreover, for the same reason, if t′ is the stage preceding ti,j we have that:
|D0

j (ti,j)| = |D0
j (t
′)| = |Nj(t′)| ≤ k, where the last inequality holds by Lemma 6

(part 2). Then |P 0
j (ti,j)| ≥ n− (2k + 1).

We now show the second claim of the lemma. Let ti,j be the stage in which
Prover sets some xi,j to 1, and let α be the partial assignment corresponding to
that stage. W. l. o. g. we assume that all variables in P 0

j (ti,j) are set before any

variable in D0
j (ti,j), because c0 is monotone decreasing in the size of the second
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argument. Fix p = |P 0
j (ti,j)|. By Lemma 6 (part 2) we get |Nj(t′)| ≤ k where t′

is the stage preceding ti,j . Hence we know that zj(α) ≥ n− k− p. The amount
of points got by Delayer on vertex j is at least

n∑
l=n−p+1

log
l

l − 1
+log(n−k−p) = log n−log

n− p
n− k − p

≥ log n−log(k+1) .

The Delayer scores
∑n
j=1 scj(f). By Lemma 7 there are at least

√
k + 1

vertices such that either |D∗j (f)| ≥ 1 or |P 1
j (f)| ≥ 1. For each vertex such

events are mutually exclusive by the definition of the rules. Then by Lemma 8
Delayer gets at least

√
k + 1(log n− log(2k + 1)) points. By Theorem 3 we get

the lower bound.

5 Tree-like Resolution Complexity of k-Clique

Instead of adding parameterized clauses of the form ¬xi1∨· · ·∨¬xik+1
, there are

also more succinct ways to enforce only satisfying assignments of weight ≤ k.
One such method was considered in [24] where for a formula F in n variables
x1, . . . , xn and a parameter k, a new formula M = M(F, k) is computed such
that F ∧M is satisfiable if and only if F has a satisfying assignment of weight
at most k. The formula M uses new variables si,j , where i ∈ [k] and j ∈ [n],
and consists of the clauses

¬xj ∨
k∨
i=1

si,j and ¬si,j ∨ xj for i ∈ [k] and j ∈ [n] (2)

¬si,j ∨ ¬si,j′ for i ∈ [k] and j 6= j′ ∈ [n] (3)

¬si,j ∨ ¬si′,j for i 6= i′ ∈ [k] and j ∈ [n]. (4)

The clauses (2) express the fact that an index i is associated to a variable xj
if and only if this variable is set to true. The fact that the association is an
injective function is expressed by the clauses (3) and (4).

This formula transformation not only leads to shorter formulas; it also allows
smaller parameterized refutations in some cases (e.g. for the pigeonhole principle
in dag-like Resolution [15,24]).

In [15] they argue that the clique formula is “invariant” with respect to this
transformation, thus its classical proof complexity is equivalent to its parame-
terized proof complexity (in both the formulation with explicit parameterized
axioms and the succinct encoding). Therefore in [15] they posed the question
of determining the complexity of the clique formulas in classical Resolution.
Theorem 10 below provides an answer to this question for the tree-like case.

5.1 Random k-colorable Graphs

Our study focuses on the average-case complexity of proving the absence of a
k-clique in random graphs distributed according to a variation of the Erdős-
Rényi model G(n, p). In this Erdős-Rényi model, random graphs on n vertices
are constructed by including every edge independently with probability p. It
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is known that k-cliques appear at the threshold probability p∗ = n−
2
k−1 . If

p < p∗, then with high probability there is no k-clique; while for p > p∗ with
high probability there are many. For p = p∗ there is a k-clique with constant
probability.

The complexity of k-clique has already been studied in restricted computa-
tional models by Rossman [39, 40]. He shows that in these models any circuit
which succeeds with good probability on graph distributions close to the critical
threshold requires size Ω(n

k
4 ), and even matching upper bounds exist in these

models [3,40]. Since we want to study negative instances of the clique problem,
we focus on probability distributions with p < p∗. To simplify the proof we will
prove a lower bound for a slightly sparser distribution. We now give the CNF
formulation of a statement claiming that a k-clique exists in a graph.

Definition 9. Given a graph G = (V,E) and a parameter k, Clique(G, k) is a
formula in conjunctive normal form containing the following clauses∨

v∈V
xi,v for every i ∈ [k] (5)

¬xi,u ∨ ¬xj,v for every i, j ∈ [k], i 6= j and every {u, v} 6∈ E (6)

¬xi,u ∨ ¬xi,v for every u 6= v ∈ V . (7)

The interpretation of variable xi,v is that vertex v is the ith member of the
clique. Clearly the formula Clique(G, k) is satisfiable if and only if the graph G
has a clique of size k.

We now describe a family of hard graph instances for k-clique. We consider
a random graph G on kn vertices. The set of vertices V is divided into k blocks
of n vertices each, named V1, V2, . . . , Vk. Edges may be present only between
vertices of different blocks, and these edges are chosen independently at random.
For any constant ε and any pair of vertices (u, v) with u ∈ Vi, v ∈ Vi′ and i < i′,
the edge {u, v} is present with probability

p = n−(1+ε) 2
k−1 .

We call this distribution of graphs Gk,ε. Notice that all graphs in Gk,ε are
properly colorable with k colors. Later we will focus on a specific range for ε.

In a k-colorable graph G with color classes V1, . . . , Vk a k-clique contains ex-
actly one vertex per color class. In this case we can simplify formula Clique(G, k)
by setting xi,v = 0 for every i ∈ [k] and v ∈ Vj such that i 6= j. Essentially we
are forcing the ith vertex in the clique to be in the ith block. If variable xi,v
survives to the restriction then v ∈ Vi, thus the index i is redundant and can
be dropped. The resulting simplified formula is the following:

∨
v∈Vi

xv for every i ∈ [k] (8)

¬xu ∨ ¬xv for every {u, v} 6∈ E(G). (9)

Variable restrictions only reduce the size of a (tree-like) Resolution refu-
tation. Therefore, in order to prove lower bounds for Clique(G, k) on graphs
distributed according to Gk,ε we can focus on the simpler CNF formulas (8)-(9).
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A comment regarding the encoding is required. In [5] formulas similar to
Clique(G, k) have been studied for the dual problem of independent sets in the
context of classical non-parameterized proof complexity. They study the case
of k = Ω(n), so the former encoding has an interesting lower bound because
it contains clauses of a non-trivial pigeonhole principle. In the parameterized
framework this is not necessarily true, since k is small and PHPk

k−1 is considered
feasible here.

We will now show that for a random graph G distributed according to Gk,ε,
it holds with high probability that the smallest decision tree which proves un-
satisfiability of Clique(G, k) has size nΩ(k(1−ε)). To show that Clique(G, k) re-
quires refutations of size nΩ(k(1−ε)) it suffices to exhibit two score functions c0
and c1 and a Delayer strategy such that the Delayer is guaranteed to score
Ω(k(1− ε) log n) points in any game played against any Prover.

Theorem 10. Let ε be a constant such that 0 < ε < 1. For a random graph
G distributed according to Gk,ε, it holds with high probability that the smallest
tree-like Parameterized Resolution refutation of Clique(G, k) has size nΩ(k(1−ε)).

Proof. Let G be a random graph distributed according to Gk,ε. We prove a lower
bound for the restricted formula (8)-(9): this immediately implies the statement
of the theorem.

For any vertex set S, let Γc(S) be the set of vertices which are common
neighbors of S (i. e., vertices that are connected to all vertices in S). Notice
that Γc(∅) is V (G). We first show that with high probability the following
properties hold:

1. G has no clique of size k;

2. For any set S of less than k
4 vertices in distinct blocks, |Γc(S) ∩ Vb| ≥

nΩ(1−ε) for any block Vb disjoint from S.

For item 1: the expected number of k-cliques in G is nkp(
k
2) = n−kε. By

Markov inequality, the probability of the existence of a single k-clique is at most
the expected value.

For item 2: it is sufficient to show the statement for sets of size exactly k
4−1.

Fix any such set S, and fix any block Vb which does not contain vertices in this
set. We denote by Xi the random variable which is 1 when i ∈ Γc(S), and 0
otherwise. Thus the size of Vb ∩ Γc(S) is the sum of n independent variables.

Notice that Xi is 1 with probability p
k
4−1 ≥ n− 1+ε

2 . Thus the expected value is

at least n
1−ε

2 . We define

T =
n

1−ε
2

2
.

Since T = nΩ(1−ε) and T is a constant fraction of the expected value, by the
Chernoff bound (see for example [29, Theorem 1.1]) we obtain that Vb ∩ Γ(S)

has size less than T with probability at most e−n
Ω(1−ε)

. By the union bound on
the choices of block Vb and of set S of size k

4 − 1 we get item 2.
Thus we can conclude that with high probability the random graph G fulfills

both 1 and 2.
We now define functions c0 and c1 which are legal cost functions for an

asymmetric Prover-Delayer game played on the k-clique formula of the graph
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G. We also exhibit a Delayer strategy which is guaranteed to score Ω(k log T )
points. This, together with Theorem 3, implies the main statement.

For any partial assignment α we consider the set of vertices “chosen by α”,
which is {u | α(xu) = 1}; any vertex which is the common neighbor of the
chosen set is called “good for α”. Notice that if v is a good vertex for α, then
the partial assignment α ∪ {xv = 1} does not falsify any clause in the formula.
Notice also that α may set to 0 some good vertices. In particular we denote by
Rb(α) the vertices of the block Vb which are good for α, but are nevertheless set
to 0 in α:

Rb(α) = { v ∈ Vb | α(xv) = 0 and for all u, α(xu) = 1 implies {u, v} ∈ E(G) }.

When asked for an unassigned variable xv, for some v ∈ Vb, the Delayer
applies the following rules in the given order:

1. If α contains at least k
4 variables set to 1, the Delayer surrenders;

2. if α(xu) = 1 for some u with {u, v} 6∈ E(G) then Delayer answers 0;

(notice that at this point vertex v must be good for α)

3. if Rb(α) has size at least T − 1, then the Delayer answers 1;

4. otherwise the Delayer leaves the answer to the Prover.

During the game the invariant |Rb(α)| < T holds for every b ∈ [k]: the only
way such a set can increase in size is when Prover sets a good vertex in Vb to 0.
Thus the size of Rb(α) can only increase one by one. When it reaches T −1 and
the Delayer is asked for a variable in that block, she will reply 1, so the size of
Rb(α) won’t increase any more.

Another important property of the Delayer strategy is that her decision to
answer 1 never falsifies a clause, since all blocks contain at least T good vertices
at any moment during the game: as soon some Rb(α) reaches size T the Delayer
sets a vertex for block b. This is possible because of item 2 together with the
fact that at most k

4 vertices are set in α. This proves that no clause in (8) can
be falsified during the game.

Neither clauses in (9) can be falsified during the game: the Delayer imposes
answer 0 whenever a vertex is not good for α, which means that, if chosen, it
would not form a clique with the ones chosen before. It is also not possible that
the game ends by violating a parameterized clause as these are just weakenings
of the clauses (9). Therefore, the game only ends when the Delayer gives up.

For an assignment α and a vertex v ∈ Vb, let

c0 =
T − |Rb(α)|

T − |Rb(α)| − 1
and c1 = T − |Rb(α)|.

Because of the previous observations the values of c0 and c1 are always non-
negative. Furthermore notice that when |Rb(α)| = T − 1 Delayer never leaves
the choice to Prover, thus c0 is always well defined when the Delayer scores.

Consider a game play and the set of k
4 vertices chosen by the final partial

assignment α. We show that for any chosen vertex, the Delayer scores log T
points for queries in the corresponding block.
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Fix the block b of a chosen vertex u. Consider the assignment α which
corresponds to the game step when xu is set to 1. Consider R = Rb(α). We
identify partial assignments

α0 ⊂ α1 ⊂ . . . ⊂ α|R|−1 ⊂ α

corresponding to the moments in the game when Prover sets to 0 one of the
variables indexed by R. For such rounds the Delayer gets at least

|R|−1∑
i=0

log
T − |Rb(αi)|

T − |Rb(αi)| − 1
≥
|R|−1∑
i=0

log
T − i

T − i− 1
= log(T )− log(T − |R|)

points. Here the first inequality follows from the fact that any vertex which
is good at some stage of the game is also good in all previous stages. Thus
|Rb(αi)| ≥ i.

Now we must consider two cases: either xu = 1 is set by Prover, or it is
set by Delayer. In the former case Delayer gets log(T − |R|) points for Prover
setting xu = 1. Together with the points for the previous zeros this yields log T
points. In the latter case Delayer gets 0 points as she set xu = 1 by herself, but
now |R| = T − 1 and she got already log T points for all the zeros assigned by
Prover. In both cases the total score of the Delayer is log T = 1−ε

2 log n.

Since this score is obtained in at least k
4 blocks, we are done.

5.2 Complete (k − 1)-partite Graphs

Instead of random graphs, we are now looking at one of the canonical graphs
without a k-clique: the (k − 1)-partite graph. We will show in this subsection
that the k-clique formulas on complete (k − 1)-partite graphs has a “short”
dag-like Resolution refutations. In contrast, we will show a lower bound for
tree-like Resolution. Let Cn be the complete (k − 1)-partite graph in which
each partition has size n. The formula Clique(Cn, k) claims that there is a way
to place k indexes on the graph in such a way that no two indexes fall into the
same partition. That essentially implies an injective mapping from k to k − 1,
so it is unsatisfiable.

Proposition 11. The formulas Clique(Cn, k) have O(2kk2n2) Resolution refu-
tations.

Proof. We follow the idea of a monotone Resolution (cf. [20]) refutation of
PHPk

k−1. A monotone refutation of the pigeonhole principle in variables pi,j
contains disjunctions of positive literals as lines in the proof. The only available
rule is

A ∨
∨
i∈I0 pi,h B ∨

∨
i∈I1 pi,h

A ∨B ∨
∨
i∈I0∩I1 pi,h

(10)

where h ∈ [k − 1] is a hole and I0, I1 ⊆ [k] are sets of pigeons. Clearly, the
formulas PHPk

k−1 admit monotone Resolution refutations depending in size only
on k.

For 1 ≤ h < k − 1, let Vh be the h-th block in the partition of the vertices.
We apply the following substitution in the monotone proof of PHPk

k−1

pi,h ←→
∨
v∈Vh

xi,v.
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To simulate an application of the inference rule (10) it is sufficient to show
the inference for empty A and B and for I0 ∩ I1 = ∅, since the simulation
in its full generality then follows by weakening. Given

∨
i∈I0

∨
v∈Vh xi,v and∨

i∈I1
∨
v∈Vh xi,v we know that for each i0 ∈ I0, i1 ∈ I1, v, w ∈ Vh, the clause

¬xi0,v ∨ ¬xi1,w is an axiom of Clique(Cn, k). Thus by using O(|Vh|2 · |I0| · |I1|)
of these axioms we easily get the empty clause.

There are monotone PHPk
k−1 refutations of size O(2k). Therefore the whole

Clique(Cn, k) refutation has size at most O(2kk2n2).

An easy analysis of the above proof shows that Clique(Cn, k) even allows
short regular Resolution refutations of size f(k)n2 for some function f . Regular
Resolution is defined by the property that on each path from the root to a leaf
each variable can be resolved at most once. Regular Resolution is an interesting
subsystem of Resolution which is known to be more powerful than tree-like
Resolution [19], but weaker than full dag-like Resolution [1].

The proof in Theorem 11 is based on the simulation of monotone Resolution
by general (dag-like) Resolution [20]. In general, this simulation is not possible
for tree-like Resolution. In particular, in the previous proof our simulation of
one monotone inference step is not tree-like. Hence, even if we started with a
tree-like proof of PHPk

k−1, the resulting proof of Clique(Cn, k) would be dag-
like. Indeed, we show a lower bound for the clique formulas on (k − 1)-partite
graphs for tree-like Resolution.

Theorem 12. Any tree-like Resolution refutation of Clique(Cn, k) requires size
nΩ(k).

Proof. The set of vertices of the graph Cn is partitioned into the sets V1, . . . , Vk−1

of size n each. We define a Delayer strategy such that at the end of the game
the partial assignment always has k − 1 indexes assigned to specific vertices in
different blocks. Moreover, we will define the score functions in such a way that
on each block Delayer scores exactly log n points. That will conclude the proof.

Delayer keeps k − 1 sets Z1, . . . , Zk−1 with Zj ⊆ Vj which represent the
excluded vertices in each block. At the beginning of the game they are all
empty. When the Prover has a partial assignment α and queries xi,v for v ∈ Vj
the Delayer answers

1. 0 if xi,w is true in α for some w 6= v;

2. 0 if xl,w is true in α for some l ∈ [k] \ {i} and some w ∈ Vj ;

3. 0 if v ∈ Zj ;

4. 1 if v 6∈ Zj and Zj = Vj \ {v};

5. and lets the Prover decide otherwise.

After each round, Delayer updates the sets Zj as follows. If Delayer sets the
variable herself, then Zj remains unaltered. Otherwise, if Prover decides 0 then
Delayer sets Zj := Zj ∪ {v}. If Prover decides 1, then Zj := Vj \ {v}.

For his choices, Prover scores according to the functions

c0 =
|Vj | − |Zj |
|Vj | − |Zj | − 1

and c1 = |Vj | − |Zj |.

19



Because of the first two rules of the Delayer strategy, the game always ends
with a partial injective assignment of indexes to vertices in different blocks.
Thus the only case in which the Delayer loses is when there is an index i such
that α sets xi,v = 0 for all vertices v in Cn. We claim that at the end of the game
k−1 indexes have been assigned, one in each block. To prove this claim, assume
for a contradiction that no index was assigned into the block Vj . Consider the
last moment in the game in which xi,v = 0 has been assigned for some v ∈ Vj .
By assumption, all variables xi,u for u ∈ Vj \ {v} have been queried before and
were already answered by 0. According to the Delayer strategy, either xi,u = 0
was set by Delayer by rule 3, or xi,u = 0 was decided by Prover. Hence in both
cases u ∈ Zj and therefore Zj = Vj \ {v}. But then Delayer would assign xi,v
to 1 according to item 4 of her strategy, a contradiction.

Thus in the final configuration of the game k−1 indexes have been assigned.
A counting argument similar (but simpler) to the ones in the previous proofs
show that the Delayer scores exactly log n points for the queries in each of the
blocks.

Fix a block i: exactly one variable xi,v is set to one. Let us say that |Zi| = z
right before that decision. Until that moment |Zi| increases one by one every
time Delayer scores some point on Prover deciding for some xi,u to be zero.
Delayer scores

z−1∑
t=0

log
|Vi| − t
|Vi| − t− 1

= log |Vi| − log(|Vi| − z).

Delayer chooses to set xi,v = 1 if and only if z = |Vi| − 1, otherwise the Prover
chooses which gives log(|Vi|− z) points to Delayer. In both cases Delayer scores
log |Vi| points on block i. Thus in the end, Delayer gets exactly (k − 1) log n
points.

Conclusion and Open Problems

In this paper we have shown that the asymmetric Prover-Delayer game can be
used to lower bound tree-like Resolution refutations. While the result itself was
already present in a previous paper by the authors [13], we provide here a new
proof using a compelling information-theoretic argument. In order to show some
example application of this game we strengthen the known lower bounds for tree-
like parameterized Resolution for pigeonhole principle and ordering principle. A
more interesting application is the nΩ(k) lower bound for Clique(G, k) formulas
for tree-like Resolution.

It is natural to ask how hard is to certify that a graph has no k-clique,
compared to the brute force approach. A Resolution refutation of Clique(G, k)
provides a sound witness of the absence of a k-clique, but how long is the
refutation of Clique(G, k) in dag-like Resolution? A lower bound nΩ(k) for
this formula would imply parameterized Resolution lower bounds even for the
stronger parameterization of CNFs.

Another interesting fact about the k-clique formulas (as we have defined
it) arises from their translation to 3-CNFs. These translated formulas have
constant width and dag-like Resolution refutations of width Θ(k) and size nO(k).
A matching lower bound would indicate that clique formulas are the hardest
among the ones of width Θ(k).
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This is particularly interesting in light of results of Atserias, Fichte, and
Thurley [4], who prove that clause learning SAT solvers run in time nO(w) if the
minimal proof width is w. It is a natural question whether this is tight. If the
clique formulas require proof size nΩ(k) this would show that the answer is yes.
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