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Abstract

Cutting planes proofs for integer programs can naturally be defined both in a syntactic
and in a semantic fashion. Filmus et al. (STACS 2016) proved that semantic cutting
planes proofs may be exponentially stronger than syntactic ones, even if they use the se-
mantic rule only once. We show that when semantic cutting planes proofs are restricted
to have coefficients bounded by a function growing slowly enough, syntactic cutting
planes can simulate them efficiently. Furthermore if we strengthen the restriction to a
constant bound, then the simulating syntactic proof even has polynomially small coef-
ficients.
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1. Introduction

The field of proof complexity studies the length of proofs for propositional unsat-
isfiability, also called refutations. The historical motivation was the P vs NP problem.
If there are unsatisfiable formulas without short refutations, then it must be that NP is
different from co-NP, and therefore that P is different from NP [11]. In this context a
proof must be efficiently verifiable and therefore written in some clear format, in some
specific proof system. If this format is simple enough, we can sometimes show strong
lower bounds on the length of such proofs. As in circuit complexity, proving lower
bounds is hard even for some apparently simple proof systems.

There are other good reasons to study proof systems. Algorithms which solve un-
satisfiability implicitly produce refutations in a relatively simple proof system. See for
example the well known connection between DPLL algorithms, decision trees and tree-
like resolution proofs [14, 13, 4, 5]. Another classic example, more relevant for this
paper, is the use of Gomory cuts to solve integer programs [22]. Algorithms that mix
branch and bound techniques, linear programming and Gomory cuts can often be for-
malized as proofs in the cutting planes proof system [9, 10].

Despite the importance of the system, the only method we know to lower-bound
the length of cutting planes proofs is interpolation [24], which was used to prove the
first lower bounds [26]. Recently a variant of this method has been applied to random
k-CNFs, with k = ω(1), as well [20, 23].
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Most systems studied in proof complexity, including cutting planes, are actually
inference systems. A proof is developed line by line, and each line is either an axiom
of the system or is derived from some previous lines according to a specific inference
rule. Nevertheless it turns out that the specifics of the inference rules are not important
for many results in the area, and the main factor in the power of the proof system is
the expressivity of the proof lines. Thus it makes sense to study both syntactic and
semantic proofs. In the former a specific set of inference rules are available to derive
a new proof line from lines derived before. In the latter a new line can be an arbitrary
logical consequence of a constant number of previously derived lines.1

A similar (but more powerful) form of semantic proofs naturally occur in the study
of proof space [15, 1]. In this framework a proof is seen as a sequence of memory
configurations, each consisting of a set of proof lines, and each configuration is seman-
tically implied by the previous one. This approach can be used to study the memory
usage of proof verification algorithms. Most successful lower-bound techniques related
to proof space, either based on connection to other complexity measures [2, 18], to peb-
bling games [25, 21, 8], or to matching games [19, 3, 6, 17], work against this type of
semantic proofs. Only limited results are known for the space complexity of CP proofs,
though (see [27]).

If we study proof length, the appropriate semantic version of cutting planes is the
one that infers any new inequality ` which logically follows (over {0, 1}n) from two
previously derived inequalities. Observe that this is not a proof system in the technical
sense, because there is no known efficient algorithm to verify whether an inference step
is sound. Indeed, even to check whether the two linear inequalities

∑
i aixi ≤ b and∑

i aixi ≥ b are simultaneously satisfiable over xi ∈ {0, 1} is NP-complete if the
coefficients have exponential magnitude with respect to the number of variables (it is
the Subset Sum problem). The situation is different with small coefficients – see the
discussion at the end of this note.

Semantic cutting planes seems to be a much stronger proof system than syntac-
tic cutting planes, and indeed even allowing just one application of the semantic rule
(together with the usual syntactic rules) gives an exponential advantage over purely syn-
tactic cutting planes [16]. Still, the same paper shows that the formula that [26] proved
to be hard for syntactic CP is hard for semantic CP as well. If semantic CP is stronger in
general, is there any condition under which syntactic CP efficiently simulates semantic
CP? In this paper we show that

Theorem 1 (Informal). A semantic cutting planes proof in which all coefficients have
very small size can be transformed into a syntactic cutting planes proof with at most
a polynomial blowup in size. If the coefficients in the semantic proof are constant, the
coefficients in the syntactic proof can be made polynomial.

The idea of the proof is to realize that if the coefficients have small size, then the
linear inequalities involved in the inference must have a lot of symmetries, hence the
argument can be viewed as proving the soundness of an inference rule with a small
number of variables. The main contribution of this paper is to show that this can be

1The limitation to a constant number of premises keeps the proof systems from being trivial.
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done in syntactic CP. Compare this result with the separation in [16]. They exhibit a
short semantic CP refutation for a CNF which is hard for syntactic CP. Such a refutation
uses exponential magnitude coefficients.

The paper is organized as follows. In Section 2 we give the necessary definitions
and notation. In Section 3 we discuss implicational completeness of CP and prove some
upper bounds. Finally in Section 4 we show our main result, namely that semantic
proofs with very small coefficients can be simulated by syntactic proofs. We conclude
the paper with some open problems.

2. Preliminaries

We consider cutting planes (CP) [9, 12], a proof system based on manipulation of
inequalities over variables x1, . . . , xn. Each line in the proof is an inequality of the
form

∑
i aixi ≥ bwhere ai, b ∈ Z. Variables x1, . . . , xn are understood to take integer

values.
A syntactic CP derivation of an inequality `τ from a set of inequalities S is denoted

as S ` `τ and is a sequence of inequalities (`1, . . . , `τ ) such that for 1 ≤ i ≤ τ the
inequality `i is either in S or is obtained by one of the following rules.

• Sum: We can add two earlier inequalities.

• Multiplication: We can multiply an inequality by a positive integer.

• Division: From an inequality
∑
i aixi ≥ b we can derive∑

i

(ai/c)xi ≥ db/ce

if c is a positive integer which divides all coefficients ai.

When used as a propositional proof system a syntactic CP derivation may also include

• Boolean axioms: We can introduce inequalities xi ≥ 0 and −xi ≥ −1.

A semantic CP derivation of an inequality `τ from a set of inequalities S is a se-
quence of inequalities (`1, . . . , `τ ) such that for 1 ≤ i ≤ τ the inequality `i is either
in S or follows semantically from two earlier inequalities `j and `k, in the sense that
`i holds for every point in {0, 1}n where `j and `k both hold. We will also consider
semantic entailment over Zn rather than {0, 1}n, but we do not need a formal definition
of derivations of this kind.

A syntactic (resp. semantic) CP refutation of S is a syntactic (resp. semantic) CP
derivation of 0 ≥ 1 from S.

If we do not care to specify the coefficients, we abbreviate
∑
i aixi ≥ b as Ax̄ ≥ b.

For our convenience we sometimes writeAx̄ ≤ b as an alias for−Ax̄ ≥ −b andAx̄ = b
as a shorthand for the conjunction of the inequalities Ax̄ ≥ b and Ax̄ ≤ b. The length
of a CP derivation is the number of steps. The magnitude of a CP derivation is the
maximum absolute value among the coefficients and constants in all its inequalities.
The size of a CP derivation is the sum, over all inequalities, of the binary length of all
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coefficients and the constant of each inequality. Clearly the size is at most polynomial
in the length times log2 of the magnitude.

Cutting planes never needs coefficients or constants of magnitude more than expo-
nential in the proof length, hence proofs of polynomial length can be made of polyno-
mial size [12]. Restricting to polynomial magnitude, which is the goal of one of our
simulations, gives a robust, natural, complete system CP∗ [7]. It can be thought of as
cutting planes in which all constants and coefficients are written in unary. The system
restricted to coefficients in the set {−2,−1, 0, 1, 2} is already exponentially stronger
than resolution, as it has short refutations of the pigeonhole principle [12].

3. Completeness

To prove our main result in the next section we need to show, with good bounds,
that syntactic CP is implicationally complete, in the sense that every inequality ` that
follows from S over the integers is provable in a finite number of steps.

Cutting planes was originally introduced as a complete implicational system in [9],
but no quantitative bound was given there on the number of steps, nor on the magnitude
of the coefficients involved. The refutational version of cutting planes was introduced
in [12], partly because, if you only consider refutations, there is a general upper bound
on proof length in terms of dimension – see Theorem 6 below.

In our setting, we consider implications from systems of axioms which explicity
include upper and lower bounds on the values of all variables. Here it is straightforward
to get useful upper bounds on implicational completeness by using results from [12].
We also prove a version of implicational completeness from scratch to get the bounds we
want on the magnitude of coefficients (which almost, but not quite, follow from [12]).

Theorem 2. Let S be a set of linear inequalities over n variables, which contains 0 ≤
xi ≤ γ for each variable xi. Suppose that S entails Cx̄ ≥ d over the integers and that
µ is a bound on the magnitude of S ∪ {Cx̄ ≥ d}.

Then there is a derivationS ` Cx̄ ≥ d of lengthO(n3n+2µγ), and also a derivation
simultaneously of length and magnitude poly(µ, γ) (if we treat n as constant).

The proof of this theorem is deferred to the end of the section. We first need
Lemma 4 which is a kind of deduction theorem, allowing us, under some conditions,
to get rid of a hypothesis by paying for it with a weaker conclusion. We also need the
following simple fact.

Fact 3. Let S be a system of linear inequalities on n variables that contains axioms
0 ≤ xi ≤ γ for every variable xi. For every a1, . . . , an, there is a syntactic CP
proof from S of

∑
i aixi ≥

(
−
∑
i:ai<0 aiγ

)
of length O(n) and magnitude at most

nγ ·maxi{|ai|}.

Proof. This is the sum of axioms−xi ≥ −γ multiplied by−ai, for every iwith ai < 0,
and axioms xi ≥ 0 multiplied by ai, for every i with ai > 0.

Lemma 4. Let S be a system of linear inequalities on n variables. Suppose that S
contains axioms 0 ≤ xi ≤ γ for every variable xi, and that

S ∪ {Ax̄ ≥ b, Ax̄ ≤ b} ` Cx̄ ≥ d
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in length τ and magnitude µ. Then we can find an integer K ≥ 0 so that

S ∪ {Ax̄ ≥ b} ` K(Ax̄− b) + Cx̄ ≥ d (1)

either in length O(τ), or simultaneously in length τ · poly(µ, n, γ) and magnitude
poly(µ, n, γ).

Proof. Let `1, . . . , `τ be the the proof of Cx̄ ≥ d. We will inductively define lines
`∗1, . . . , `

∗
τ of the form required by the lemma, and show that each `∗i can be derived

from `∗1, . . . , `
∗
i−1. Let us first ignore the bound on the magnitude, and just focus on

building a proof of length O(τ). We distinguish various cases.
1. Axiom: If `i is the axiom −Ax̄ ≥ −b (that is, Ax̄ ≤ b), we put K = 1, so that
`∗i is the line

`∗i : (Ax̄− b)−Ax̄ ≥ −b

which is just another way of writing 0 ≥ 0. Other axioms are unchanged.
2. Sum, multiplication: These are immediate from the definition.
3. Division: `i is derived from `j for some j < i by division. So we have

`j : gEx̄ ≥ f
`i : Ex̄ ≥ df/ge .

By the inductive hypothesis, for some integer K ≥ 0 we have derived

`∗j : K(Ax̄− b) + gEx̄ ≥ f .

We multiply the axiom Ax̄ ≥ b by gK −K to derive (gK −K)(Ax̄ − b) ≥ 0
and add this to `∗j to get

gK(Ax̄− b) + gEx̄ ≥ f .

Dividing by g now gives an inequality `∗i of the right form.

The construction so far gives a derivation of length O(τ) with no guarantee on the
magnitude. Suppose now we are considering the i-th lineEx̄ ≥ f in the original proof,
and that for every previous line `j we have derived some `∗j in which K ≤ (nγ + 1)µ.
We want to derive a `∗i with the same bound, by a short proof of small magnitude. We
first derive

K(Ax̄− b) + Ex̄ ≥ f (2)
using one of the schemes 1, 2 and 3 explained above. Notice that none of these schemes
increases K very much from the earlier lines `∗j , and in particular its value is, induc-
tively, polynomial in nγµ. Let−δ be the minimum value which can be taken byEx̄ for
0 ≤ x̄ ≤ γ. We derive Ex̄ ≥ −δ from S in O(n) steps using Fact 3. We can assume
f > −δ as otherwise we could now set K = 0. Note that |δ| ≤ nµγ.

We will reduceK in (2) step by step until it reaches size f + δ ≤ µ+nµγ, and will
set `∗i to be the resulting line. So suppose K > f + δ. We first multiply (2) by K − 1
and add Ex̄ ≥ −δ to it, giving

(K − 1)K(Ax̄− b) +KEx̄ ≥ Kf − f − δ. (3)
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Then, since f + δ < K, by dividing by K and rounding up we get

(K − 1)(Ax̄− b) + Ex̄ ≥ f.

We repeat this step until we get K down to f + δ.
Such a derivation has magnitude and length at most poly(n, µ, γ).

Corollary 5. Let S be a system of linear inequalities on n variables. Suppose S con-
tains axioms 0 ≤ xi ≤ γ for every variable xi, and that

S ∪ {Ax̄ ≤ b, Ax̄ ≥ b} ` 0 ≥ 1

in length τ and magnitude µ. Then

S ∪ {Ax̄ ≥ b} ` Ax̄ ≥ b+ 1 (4)

either in length O(τ), or simultaneously in length τ · poly(µ, n, γ) and magnitude
poly(µ, n, γ).

Proof. We apply Lemma 4. This gives

S ∪ {Ax̄ ≥ b} ` K(Ax̄− b) + 0 ≥ 1

for some integer K ≥ 0. If K = 0 then we can get (4) by summing Ax̄ ≥ b and 0 ≥ 1.
Otherwise with one more division step we get

S ∪ {Ax̄ ≥ b} ` Ax̄ ≥ b+ d1/Ke = b+ 1.

Length and magnitude depend on which derivation we use from Lemma 4.

We will now state two versions of quantitative refutational completeness for CP,
which we will then use to give bounds on implicational completeness.

Theorem 6. Let S be a set of linear inequalities over n variables with no integral
solution. There exists a syntactic CP refutation of S of length O(n3n+1).

Proof. We observe that [12, Theorem 1’] and [12, Remark 2] give the bound n3n on
the number of lines in a refutation, in which each line is obtained by taking a positive
linear combination of earlier lines and rounding up. By Carathéodory’s theorem, we
may assume that each linear combination uses no more than n+ 2 previous lines.

Cook et al. [12] also shows bounds on the magnitude of such a refutation, namely
that the binary size of all coefficients and constant terms is polynomial in the binary size
of S. This guarantees that the magnitude increases at most quasi-polynomially. Here
we guarantee a polynomially bounded increase, but our bound only works for a constant
number of bounded variables, as we will have in our applications, and we pay for this
improvement with a worse bound on the final length of the refutation.

Theorem 7. Let S be a set of linear inequalities over n variables of magnitude µ, with
no integral solution, which contains 0 ≤ xi ≤ γ for every variable xi. When n is
a constant, S has a syntactic CP refutation of length and magnitude polynomial in µ
and γ.
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Proof. We will use the notation `τµ to indicate a syntactic derivation of length τ and
magnitude µ. Consider any tuple ā ∈ Zn with 0 ≤ ai ≤ γ for i ∈ [n]. Since S is
unsatisfiable, it contains some axiom

∑
i bixi ≥ c such that

∑
i biai = d < c. We first

construct a derivation

{xi = ai}ni=1 `3n−1nµγ

∑
i

−bixi ≥ −d

which is a positive combination of summands xi ≥ ai for bi < 0 and −xi ≥ −ai for
bi > 0. Then we add

∑
i bixi ≥ c and divide by c− d, to get

S ∪ {xi = ai}ni=1 `3n+1
nµγ 0 ≥ 1 .

Now fix any ā ∈ Zn−1 with 0 ≤ ai ≤ γ for i ∈ [n− 1]. For each 0 ≤ b ≤ γ we have

S ∪ {xi = ai}n−1i=1 ∪ {xn = b} `3n+1
nµγ 0 ≥ 1

so by Corollary 5 we have

S ∪ {xi = ai}n−1i=1 ∪ {xn ≥ b} `
poly(µ,n,γ)
poly(µ,n,γ) xn ≥ b+ 1.

Stringing these derivations together, and using the axioms 0 ≤ xn ≤ γ, we get

S ∪ {xi = ai}n−1i=1 `
poly(µ,n,γ)
poly(µ,n,γ) 0 ≥ 1,

where we have multiplied the length by γ + 1, and not increased the magnitude. The
theorem follows by repeating these steps for xn−1, . . . , x1 with n being a constant.

We are now ready to prove Theorem 2, the main result of this section.

Proof of Theorem 2. Fact 3 gives an integer δ with |δ| ≤ nµγ and a derivation Cx̄ ≥ δ
from S of length O(n) and magnitude ≤ nµγ. If δ > d then we can derive 0 ≥ d− δ
from any pair of axioms {xi ≥ 0,−xi ≥ −µ}, and then add that to Cx̄ ≥ δ.

Otherwise, observe that for a = δ, . . . , d− 1 the set S ∪ {Cx̄ = a} is unsatisfiable
over the integers. To bound just the length we use Theorem 6, hence for each a we have

S ∪ {Cx̄ = a} ` 0 ≥ 1

in length O(n3n+1). Thus by Corollary 5

S ∪ {Cx̄ ≥ a} ` Cx̄ ≥ a+ 1

also in length O(n3n+1). Starting with Cx̄ ≥ δ, and then using these d− δ derivations
in series, gives the theorem (as necessarily |d| ≤ µ).

The simultaneous bound on length and magnitude follows by a similar argument,
but using Theorem 7 instead of Theorem 6.
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4. Semantic and syntactic CP

In this section we prove the main result of the paper, namely the simulation of seman-
tic CP with small coefficients by syntactic CP. Let `1, . . . , `ν and ` be inequalities such
that `1, . . . , `ν semantically entail ` over 0/1 assignments to the variables x1, . . . , xn.
Suppose that the variables can be partitioned into sets B1, . . . , Bm such that each in-
equality in `1, . . . , `ν , ` can be written in the form

a1
∑
i∈B1

xi + · · ·+ am
∑
i∈Bm

xi ≥ b. (5)

In other words, variablesxi andxj are in the same setBk if, in each inequality `1, . . . , `ν , `,
variable xi has the same coefficient as xj . Let `′1, . . . , `′ν , `′ be the result of writing all
the inequalities in the above form, and then for each Bj replacing

∑
i∈Bj

xi with a
single variable yj . For example, Equation (5) becomes

a1y1 + · · ·+ amym ≥ b. (6)

Let T be the set of inequalities {0 ≤ yj ≤ |Bj | : 1 ≤ j ≤ m}. Then, over the integers,

{`′1, . . . , `′ν} ∪ T � `′.

This is because any assignment to the y variables satisfying the left hand side can be
made into a 0/1 assignment to the x variables satisfying `1, . . . , `ν ; hence ` is true
with this assignment to the x variables, and so `′ is true with the assignment to the y
variables.

If the numberm of the y variables is much smaller than n, we can build a relatively
efficient syntactic CP derivation

{`′1, . . . , `′ν} ∪ T ` `′ (7)

using the completeness results in Section 3. Now take this derivation, and substitute
each variable yj with the corresponding sum

∑
i∈Bj

xi. Every inequality in T , after
the substitution, has a short derivation from the boolean axioms for the x variables.
Hence

{`1, . . . , `ν} ` `

with essentially no increase in length of magnitude with respect to the derivation in (7).
We get the next two theorems by applying the argument above to each inference step
of the semantic CP derivation. The results differ because of the strategy we use to get
derivation (7).

Theorem 8 (Very small coefficients). Any semantic cutting planes proof of magnitude
σ = O

(
3

√
logn

log logn

)
is polynomially simulated by a syntactic cutting planes proof.

Proof. Consider an inference step in the refutation. Semantic CP has binary rules, so
three inequalities appear and for each variable xi, the sequence of coefficients in front
of xi is one among (2σ+1)3 possibilities. Therefore the n variables can be divided into
no more than (2σ + 1)3 blocks, and the inequalities in the inference can be considered
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as if they had m = (2σ + 1)3 variables bounded between 0 and n. The magnitude
is dominated by the bounds on the variables, so it is at most n. Using Theorem 2, we
replace each application of the inference rule with a derivation of lengthO(m3m+2n2).
For σ = O

(
3

√
logn

log logn

)
, this is polynomial in n.

Theorem 9 (Constant coefficients). Any semantic cutting planes proof of constant mag-
nitude is polynomially simulated by a syntactic cutting planes proof of polynomial mag-
nitude.

Proof. We use the same construction as in Theorem 8, but using the version of The-
orem 2 which bounds magnitude. We now have a constant number of variables m,
again bounded between 0 and n, and magnitude n. So we can simulate each semantic
inference with length and magnitude polynomial in n.

Conclusions

We managed to efficiently simulate semantic proofs with very small coefficients
using syntactic cutting planes, and we know that the simulation cannot be extended to
exponentially large coefficients [16]. The natural question left open is to check whether
the simulation can be extended to semantic proofs with polynomial coefficients.

This is a proper proof system since there is a known efficient way to verify each
application of the semantic inference rule, that we sketch. Suppose we want to verify
whether

a1x1 + · · ·+ anxn = b

is satisfiable over x̄ ∈ {0, 1}n, when ai are integer numbers. Consider a branching
program that queries x1, . . . , xn in turn and keeps track of the sum a1x1 + · · ·+ aixi.
Such a branching program has depth n and width 2

∑
|ai| + 1, since the partial sum

is between −
∑
|ai| and

∑
|ai| at every step. Hence if the coefficients are small, we

can check in polynomial time whether a value b is reachable by some choice of assign-
ments. A simple extension of this procedure is sufficient to verify the soundness of
any semantic CP inference with polynomial coefficients. Hence it is even more com-
pelling to understand whether syntactic CP can simulate efficiently this restricted form
of inference.

In this paper we focus on a semantic rule with two premises. In [16] they also
consider variants where the semantic rule has a constant number k ≥ 2 of premises.
Theorems 8 and 9 can be easily generalized to those variants. In particular Theorem 8
holds with σ = O

(
k+1

√
logn

log logn

)
.
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Vinyals. Towards an understanding of polynomial calculus: New separations and
lower bounds. In FedorV. Fomin and et al., editors, Automata, Languages, and
Programming, volume 7965 of Lecture Notes in Computer Science, pages 437–
448. Springer Berlin Heidelberg, 2013.

[18] Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc
Vinyals. From small space to small width in resolution. In 31st International
Symposium on Theoretical Aspects of Computer Science, STACS, pages 300–311,
2014.

[19] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil
Thapen. Space complexity in polynomial calculus. SIAM Journal on Comput-
ing, 44(4):1119–1153, August 2015.

[20] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random
CNFs are hard for cutting planes. Technical Report 045, Electronic Colloquium
on Computational Complexity, 2017.

[21] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling prob-
lem is complete in polynomial space. SIAM Journal on Computing, 9(3):513–524,
1980.

[22] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5):275–278, 1958.
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