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Abstract

There are methods to turn short refutations in Polynomial Calculus (PC) and Polyno-
mial Calculus with Resolution (PCR) into refutations of low degree. Bonet and Galesi
[8, 10] asked if such size-degree trade-offs for PC [13, 17] and PCR [2] are optimal.

We answer this question by showing a polynomial encoding of Graph Ordering Prin-
ciple on m variables which requires PC and PCR refutations of degree Ω(

√
m). Trade-offs

optimality follows from our result and from the short refutations of Graph Ordering Prin-
ciple in [8, 9].

We then introduce the algebraic proof system PCRk which combines together Poly-
nomial Calculus (PC) and k-DNF Resolution (RESk). We show a size hierarchy theorem
for PCRk: PCRk is exponentially separated from PCRk+1. This follows from the previous
degree lower bound and from techniques developed for RESk.

Finally we show that random formulas in conjunctive normal form (3-CNF) are hard
to refute in PCRk.

1 Introduction
One of the research directions to tackle fundamental complexity questions like NP 6=CO-NP is
the field of Propositional Proof Complexity. This area it is mainly concerned with showing non-
trivial lower bounds for the length of proofs in sound and complete proof systems. Obtaining
such results for all possible proof systems would separate NP from CO-NP. The approach one
usually takes is that of proving non-trivial lower bounds for stronger specific proof systems
until we have sufficient knowledge to infer a general result. Proof complexity has been an
active area for almost 30 years, and thus many proof systems have been considered and many
strong and important lower bounds (see [5, 26, 23] for surveys on the topic) have been proved
so far. Nerveless we are still far from having lower bounds for text-book propositional proof
systems, like Hilbert systems or Gentzen’s PK calculus.

In this paper we deal with algebraic refutational proof systems. Algebraic systems based
on Hilbert Nullstellensatz were introduced by Beame et al. in [4]. Later, Clegg et al. in
[13] defined the Polynomial Calculus (PC), where the formula to refute is encoded as a set of
unsatisfiable polynomial equations. Polynomial Calculus with Resolution (PCR) is a simple
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extension of PC defined in [2]. Deductions are multilinear polynomials derived as elements of
the ideal generated from the equations. Besides the length, a significant complexity measure
considered for algebraic systems is the degree of polynomials used in a proof. Proving degree
lower bounds in these systems is one of the main tasks in proof complexity. The work of
Razborov [21] proves the first linear degree lower bounds for the Pigeonhole principle in PC.
It has been followed by several other degree lower bounds [6, 11, 3, 20], even for the class of
random formulas which is one of the prominent hard classes for many proof systems.

The study of degree is not just a mathematical curiosity. It is connected with the complexity
of proof search algorithms. In many applications we are faced with the problem of finding a
proof of a given formula, if one exists.

A very important feature of PC is that there is a proof search algorithm based on the Gröbner
Basis algorithm due to Clegg et al. in [13]. The running time of the algorithm is a polynomial
of degree equal to the minimal degree required to refute the principle. Thus the algorithm
produces a polynomial size refutation in polynomial time for any formula with constant degree
PC refutations. A degree lower bound also implies a lower bound on the running time of such
algorithm.

This is similar to what happens for another well-known proof system related to PC, the
system called Resolution. After the well known result “short proofs are narrow” of Ben-Sasson
and Wigderson [7], size lower bounds for the number of clauses in a proof can be discovered
using the minimal width (i.e. number of literals in a clause). In studying the role of width in
the complexity of proofs for Resolution, Ben-Sasson and Wigderson obtained a proof search
algorithm for Resolution which strategy is to infer clauses of increasing width.

Both the works in [7] and in [13] highlight a connection between size complexity and
width/degree complexity, by the means of size-width (size-degree) trade-offs. They show that
any formula with a short refutation in Resolution or PC has respectively a low width or low
degree refutation, and this fact can be used to reduce the search space for a theorem prover.

Investigating the efficiency of the proof search algorithm proposed by Ben-Sasson and
Wigderson, Bonet and Galesi [8, 9] proved that the class of formulas GTn has polynomial
size Resolution proofs but requires width equal to the square root of the number of variables in
the formula. This implies the asymptotic optimality of the algorithm proposed in [7]. In [8, 10]
they tried to extend the previous results to PC. Informally they asked to the following questions:
what is the efficiency of the Gröbner Basis Algorithm for PC when compared to Resolution?
Can the Gröbner Basis algorithm for PC perform better than Resolution? They conjectured this
is not the case, suggesting that some modifications of the GTn principle would require square
root degree refutations in PC. They gave some partial results in this direction, showing that
a modification of the Pigeonhole Principle admits polynomial size Resolution refutations but
requires O(log n) degree in Polynomial Calculus.

The main result in this paper is the proof of their conjectures using the Graph Ordering
Principle GOP(G). We show that when G has good vertex expansion, any PC refutation of
GOP(G) requires degree which is the square root of the number of propositional variables.
On the other hand GOP(G) admits polynomial size Resolution refutations. The existence of
a formula with high degree complexity and a short refutation implies optimality of the size-
degree trade-off for polynomial calculus. It also proves that for formulas with small Resolution
refutations the degree of the PC simulation of Resolution shown in [13] is optimal.

A form of optimality of the size-degree trade-off for PC was already established by Razborov’s
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linear degree lower bound for pigeonhole principle in [21]. Nevertheless such principle requires
exponential size to be proved. The optimality of proof search algorithms in this case is less in-
teresting. Our results on GOP(G) show that any strategy based on degree can be very inefficient
on formulas with short refutations.

Our result follows from a new degree lower bound for the system of polynomials GOP(G),
which encodes the negation of a linear ordering principle over graphs. Our formula is a gener-
alization to graphs of the linear ordering formula GTn of [8, 9] and is a slight modification of a
formula introduced in [24].

To prove the degree lower bound we use the approach devised by Razborov in [21] and
refined in [3]. We build a linear operator which sets to true all the consequences of GOP(G)
which can be deduced in PC using low degree. So far Razborov’s technique has been applied to
“matching-like” formulas such as the Pigeonhole formulas, random CNF’s, etc. . . [21, 20, 2, 3].
Our result extends this technique to other types of formula.

In the paper we also introduce a generalization of PCR. We define the system PCRk which
combines PC with RESk. RESk is a generalization of Resolution introduced by Krajı́ček in
[18], where k-DNFs (i.e. disjunctions of k-conjunctions) are used instead of clauses. Exactly
as in PCR where monomials succinctly represent clauses, in PCRk we generalize monomials to
k-monomials to succinctly represent k-DNFs: monomials are then 1-monomials.

We show that the degree of a refutation in PCRk is the same for PC and PCR. So we
investigate the relative power of PCRk with respect to PC and PCR in terms of the length of
refutations, i.e. the number of k-monomials.

Using random restriction techniques and our PC/PCR degree lower bound for GOP(G) we
obtain lower bounds for the length of proofs in PCRk (see Section 5). First we prove that
PCRk is a natural generalization of RESk showing that any RESk refutation can be simulated
efficiently by PCRk. Then using the switching lemma and the approach of Segerlind et al.
in [24] for RESk and using our degree lower bound for GOP(G) we prove an exponential
separation between PCRk and PCRk+1. Finally using the results of Alekhnovich in [1] together
with PCR degree lower bounds for a certain encoding of linear equations developed in [2], we
prove that with high probability (as long as k = o(

√
log n/ log log n)), any PCRk refutation

(over a field with characteristic different from 2) of random 3-CNF with a linear number of
clauses requires exponential size. We omit the details of this result, as it is very similar to the
one in [1]. Details appeared in a preliminary version of this work at [15].

The paper is organized as follows. In Section 2 we give all the preliminary definitions.
In Section 3 we introduce our graph ordering principle, we prove the degree lower bounds
for GOP(G) and we discuss its consequences for the size-degree trade-off. In Section 4 we
define PCRk and discuss its relations with other proof systems. Finally in Section 5 we prove
the exponential separation between PCRk and PCRk+1 and we discuss the lower bounds for
random 3-CNF.

2 Preliminaries
Let V be a set of boolean variables. A literal l is either a variable x or its negation x̄. A k-
clause is a disjunction of at most k literals; a k-term is a conjunction of at most k literals. A
boolean formula F is a k-CNF if it is a conjunction of k-clauses; a k-DNF is the disjunction of
k-terms. The width of a clause is the number of literals in the clause. A partial assignment is
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a mapping ρ : {x1, . . . , xn} → {0, 1, ∗}; we let Dom(ρ) to be ρ−1({0, 1}). Given a restriction
ρ and a boolean formula F by F �ρ we denote the formula obtained from F after setting all the
variables in Dom(ρ) according to ρ, simplifying F in the natural way and leaving all the other
variables unassigned.

2.1 Notions from commutative algebra
Given a field F, we consider polynomials in the ring F[x1, . . . , xn]. Given a setE = {f1, . . . , fn}
of polynomials, by Span(E) we denote the ideal generated by E, that is the set{∑

i

(fi · hi) | hi ∈ F[x1, . . . , xn]

}

. We say that a set of polynomials f1, . . . , fn semantically implies a polynomial g if any as-
signment that satisfies fi = 0 for all i ∈ [n], also satisfies g = 0. We write f1, . . . , fn |= g or
E |= g.

We define a notion of residue of polynomials with respect to an ideal. We consider the
standard graded lexicographic (grlex) monomial order (denoted as <P) as given in [14]. In
particular grlex is defined as follows: 1 <P x1 <P x2 <P · · · <P xn. For any two products
of variables m,m′ and a variable x the following two properties hold: (a) if m <P m′ then
xm <P xm

′; (b) m <P xm. This order is lexicographically extended to polynomials, and 0 is
the smallest of them.

Notice that grlex is not a total order, thus there could be incomparable q, q′ ∈ Span(E).
This can happen if and only if the underlying sets of monomials are equal but have different
coefficients. In that case there exists a linear combination of q and q′ which is strictly smaller
than both, and which is in Span(E). Thus a minimum element in Span(E) always exists.

Given a polynomial q, we define RE(q) as the minimal, with respect to <P, polynomial p
such that q − p ∈ Span(E).

RE(q) = min{p ∈ F[x1, . . . , xn] : q − p ∈ Span(E)}

In the following sections we use some properties of the operator RE which can be easily
derived from the definition:

Property 1. Let E be a set of polynomials and let p and q be two polynomials. Then:

• RE(p) ≤P p;

• if p− q ∈ Span(E), then RE(p) = RE(q);

• RE is a linear operator;

• RE(pq) = RE(p ·RE(q)).

We shall consider polynomials on the field F defined on the domain {0, 1}n. More explicitly
we consider elements of the ring F[x1, . . . , xn]/{x2

i − xi}i∈[n]. Such polynomials are the base
for all algebraic proof systems we will consider.
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2.2 Proof systems
Polynomial Calculus (PC) is a refutational system defined in [13], and based on the ring
F[x1, . . . , xn] of polynomials. We always consider equations of the form p = 0, and we simply
denote them as p. The equations are intended to hold on {0, 1}n thus the system contains the
following axioms:

x2
i − xi, i ∈ [n]

Moreover it has two rules. For any α, β ∈ F, p, q polynomials and variable x:

p q

αp+ βq
Sum Rule

p

xp
Product Rule

A PC proof of a polynomial g from a set of initial polynomials f1, . . . , fm (denoted by
f1, . . . , fm ` g) is a sequence of polynomials where each one is either an initial one, an axiom,
or it is obtained applying one of the rules to previously derived polynomials. A PC refutation
is a proof of the polynomial 1.

PC is a complete proof system, in the sense that a polynomial g has a PC proof from a
set of polynomials E iff g(~x) = 0 for every ~x ∈ {0, 1}n which is a common root of E.
Moreover E has no common {0, 1} solutions (we call E contradictory) iff 1 ∈ Span(E ∪
{x2

i −xi}i∈[n]). Completeness of PC comes as a corollary of Hilbert’s Nullstellensatz (see [14])
and from complete algorithms based on Gröebner bases [13].

Given a PC proof Π, the degree of Π, deg(Π), is the maximal degree of a polynomial in the
proof; the size of Π, S(Π), is the number of monomials in the proof, the length of Π, |Π|, is the
number of lines in the proof.

We remark here that when we work in Polynomial Calculus, we implicitly assume that the
polynomials {x2

i − xi}i∈[n] are always included in the set of initial polynomials. With this
assumption in mind we always have that E ` p−RE(p) for any polynomial p.

Polynomial Calculus with Resolution (PCR) [2] is a refutational system which extends PC

to polynomials in the ring F[x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are new formal variables.
PCR includes the axioms and rules of PC plus a new set of axioms defined by

1− xi − x̄i i ∈ [n]

to force x̄ variables to have the opposite values of x variables.
We extend to PCR the definitions of proof, refutation, degree, size and length given for PC.

Observe that using the linear transformation x̄ 7→ 1 − x, any PCR refutation can be converted
into a PC refutation without increasing the degree. Notice that such transformation could cause
an exponential increase in size. Moreover any Resolution refutation can be easily transformed
in a PCR refutation of degree equal to the width of the original one.

Resolution on k-DNF (RESk) [18] is a sound and complete refutational system which ex-
tends Resolution (RES) with k-DNFs. The rules are the following ones:

A
A∨l Weakening A∨l1 ··· A∨lj

A∨
∧j

i=1 li
∧-intro, 1 < j ≤ k

A∨
∧j

i=1 li
A∨li

∧-elim, 1 < j ≤ k
A∨
∧j

i=1 li B∨
∨j

i=1 ¬li
A∨B Cut, 1 < j ≤ k

(1)
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A proof in RESk from a set of clauses F is a sequence of k-DNFs where each one is either
an axiom of RESk, or a clause in F , or the result of a rule application on two previously derived
k-DNFs. A refutation of F is proof of the empty disjunction. Let Π be a RESk proof. Then the
size of Π, denoted as S(Π), is the total number of symbols appearing in Π. The length of Π,
|Π|, is the number of lines in the sequence defining Π.

Polynomial Calculus on k-DNF (PCRk) We discuss an extension of Polynomial Calculus
which includes RESk in the same way PCR includes Resolution. Any line in a proof is a sum of
algebraic formulas called k-monomials, each of them is a succinct representation of a k-DNF
in the same way PCR monomials succinctly represent boolean clauses. Such sum is called a
k-polynomial. The following translation relates k-DNFs and k-monomials.

∏
j

1−
kj∏
i=1

l̄i

←→∨
j

 kj∧
i=1

li

 where kj ≤ k

Such translation is consistent with the usual convention of algebraic proof systems in which
0 represents true and 1 represents false.

Notice that proof lines in PCRk are algebraic formulas and can be written as polynomials.
The issue here is that some functions have short k-polynomial representations, but require large
size to be represented as polynomials. This is similar to what happens in RESk, where a short
k-DNF could require a very large number of clauses to be represented in RES.

The axioms of PCRk include those of PCR plus axioms

1− y1y2 · · · yj − (1− y1y2 · · · yj) for j ≤ k

for any set {y1, y2, . . . , yj} of variables (even negated ones) of size less than or equal to k. These
axioms introduce syntactical parentheses and allow expansion of k-polynomials. Analogously,
the rules of PCRk are those of PCR with one more weakening rule

p

(1− y1 · · · yj)p
for j ≤ k

Size S(Π) of a proof Π is measured in term of number of k-monomials appearing in the
proof. The length |Π| is the number of lines in the proof.

A PCRk proof of a k-polynomial g from k-polynomials f1, . . . , fn (denoted by f1, . . . , fn `
g) is a sequence of k-polynomials ending with g, each one obtained either from an axiom or by
applying a rule to previously derived k-polynomials. In particular a PCRk refutation is a proof
of 1.

2.3 Expander Graphs of constant degree
Definition 1. Let a graph G = (V,E) be given, for any U ⊆ V , the neighborhood of U , Γ(U),
is the set of vertices in V \U which have an adjacent vertex in U . The graph G is said to be an
(r, c)-vertex expander if for any set U ⊆ V with |U | ≤ r, |Γ(U)| ≥ c|U |. We call c the vertex
expansion of G.
Let E(U,U ′) be the set of edges between U and U ′ for disjoint sets U,U ′ ⊆ V . The graph G is
said to be an (r, c)-edge expander if for any set U ⊆ V with |U | ≤ r, |E(U, V \ U)| ≥ c|U |.
We call c the edge expansion of G.
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For our result we need a family of O(1)-regular graphs which are (Θ(n),Θ(1))-vertex
expanders of n vertices . Such families exist and there are several constructions in the literature.
An efficient construction is given in [16] using a graph composition devised in [22] and called
zig-zag product. Such construction provides a d regular (Θ(n),Θ(1))-edge expander, and any
d regular (r, c)-edge expander is also an (r, c/d)-vertex expander.

Proposition 1. (Proposition 9.2 [16], d fixed to 3) For any t an undirected graph G can be
constructed, such that G has d4t vertices, it is 9 regular and is a (V (G)

2
, 1

2
)-edge expander. Thus

it is also a (V (G)
2
, 1

18
)-vertex expander.

Notice that such graphs have multiple edges. This is not an issue because removing repeated
edges only reduces the degree and does not modify vertex expansion. Whenever we say in the
following that G is an (r, c)-vertex expander, we assume it has constant degree.

3 Lower bound for Graph Ordering Principle
In this section we prove that certain graph ordering tautologies have no low degree PC refu-
tations. Ordering tautologies were introduced in [19, 25], they have been used in [8, 9] to
prove the optimality of the size-width trade-off for resolution [7] and used in [24] to obtain an
exponential separation between RESk and RESk+1.

We present a (negated) Graph Ordering Principle and we show that such formula has a short
refutation (Lemma 1). Under some assumptions on the graph we also show a degree lower
bound for such formula (Theorem 1). The core of the theorem is Lemma 2. We immediately
prove the main results then we devote the rest of the section to the proof of Lemma 2.

Graph Ordering Principle: if we give directions to the edges of a simple undirected
graph according to a total order ≺ on its vertices, then there is a vertex which is
less than any of its neighbours.

Directions are encoded as variables xa,b for any a, b ∈ [n] such that a < b, where < is the
standard order of integers. The variables xa,b are intended to take the value 1 when a ≺ b. The
negation of the principle is made of two sets of polynomial constraints. The first one, that we
call T , expresses that the relation ≺ is a total order on [n]:

∀a < b < c xa,bxb,c(1− xa,c) (2)

∀a < b < c (1− xa,b)(1− xb,c)xa,c (3)

Equations in (2) and (3) say that there are no cycles of three elements in [n] according
to ≺. This implies transitivity. Moreover notice that we do not need the usual antisymmetry
constraints because of the definition of our variables. Equations in T are satisfied if and only if
the assignment defines a proper total order over [n].

The second set of constraints depends on the underlying graph G and expresses that there
is no vertex in G which is less than all its neighbours (according to ≺). We denote Γ(u) the set
of vertices adjacent to u in G.

∀u ∈ V
∏

a∈Γ(u):a<u

(1− xa,u) ·
∏

a∈Γ(u):a>u

xu,a (4)
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Each equation has degree at most equal to the degree of G. We denote as Mu the equation
in (4) which corresponds to the vertex u ∈ G and we extend this notation to sets of vertices: for
U ⊆ [n] we denote with MU the corresponding set of constraints in (4). We call GOP(G) the
union of T with the equations M1 . . .Mn induced by G. The CNF encoding of GOP(G) has a
well known short refutation in Resolution [25, 8, 9] which has an efficient simulation in PCR.

Lemma 1. There are PC and PCR refutations of GOP(G) of degree O(n). Moreover if G has
constant degree then PCR refutations have size O(nO(1)).

Proof. Consider the proof system PCR and a vertex u ∈ V . By using Mu and the axioms
1− xa,b − x̄a,b = 0 it is easy to prove that

Mu `
∏

a∈Γ(u):a<u

x̄a,u ·
∏

a∈Γ(u):a>u

xu,a = 0

in size 2deg(G) and degree deg(G). By weakening we deduce
∏

a<u x̄a,u ·
∏

a>u xu,a = 0 in
degree O(n). Call M ′

u such equation. Notice that T ∪ {M ′
1 . . .M

′
n} is essentially a polynomial

encoding of the GTn formula considered in [25, 8, 9]. In those papers there are several polyno-
mial size Resolution refutations of width O(n). We get the claim for PCR by simulating any of
them. We can also transform them in PC refutations by mapping x̄ variables to 1− x. The size
increases exponentially but the degree does not change.

To prove a degree lower bound for GOP(G) we follow the approach devised in [3]. We
show a non trivial linear operator which sets to 0 all polynomials deducible in low degree from
GOP(G).

Lemma 2. Let G be a (r, c)-vertex expander. There exists a linear operator L defined on
polynomials such that:

1. L(p) = 0, for any polynomial p ∈ GOP(G)

2. for each monomial t and for each variable x, if deg(t) < cr/4, then L(x·t) = L(x·L(t))

3. L(1) = 1.

We postpone the proof of this lemma to the end of the section. Now we show that Lemma
2 implies the following statement.

Theorem 1. If G is an (r, c)-vertex expander then there is no PC refutation of GOP(G) of
degree less than or equal to cr/4.

Proof. Assume for the sake of contradiction that such refutation exists. Apply L on all its
lines. Any polynomial in GOP(G) is set to 0 because of property 1 of L stated by Lemma
2; any inference using sum rule is set to 0 because of linearity of L; any inference using the
product rule of PC keeps all terms below degree cr/4 by assumption, so property 2 of L implies
that the result of such inference is set to 0. By induction on the lines of the proof the last line is
mapped to 0. This is a contradiction because the last line (i.e the polynomial 1) is not mapped
to 0 according to property 3 of L.
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Before proving Lemma 2 we give an overview of the argument. We want to estimate the
amount of information required to deduce an equation. In particular we are interested in the
set of premises of the form (4) used for any deduction. It is natural to identify such set as
a set of vertices. The intuition is that any equation deduced from a small set of vertices is
“locally deducible”. More concretely for any monomial t we are interested in deductions like
t−RT ,MI

(t) = 0, which is a locally deducible if I is a small set. The lower bound comes from
the following considerations:

• 1 = 0 is not locally deducible.

• When G is an expander, any non-local deduction requires high degree (i.e. low degree
deductions are local).

We capture local reasoning with the operator L: its kernel will contain all linear combi-
nations of local deducible equations. In the following we assume G to be given and to be a
constant degree (r, c)-vertex expander. All the definitions are given with respect to such graph.

Our candidate for the set of relevant vertices of a monomial t is called Support of t. In
Lemma 4, 5, 6 we prove that this choice is correct.

Definition 2. Given a set of vertices U we define the inference relation  U in this way: For
A,B ⊆ [n],

A U B if |B| ≤ r

2
and Γ(B) ⊆ A ∪ U

Consider a maximal sequence of sets B1, B2, . . . Bk such that for all 1 ≤ i ≤ k:(⋃
j<i

Bj

)
 U Bi (5)

Bi 6⊆

(⋃
j<i

Bj

)
(6)

We define the support of U as

Sup(U) :=
k⋃
i=1

Bi

We call V ertex(p) the set of vertices mentioned in the variables occurring in a polynomial p.
We denote the set Sup(V ertex(p)) as Sup(p).

Fact 1. The value of Sup(U) is uniquely determined by U .

Proof. Any new set in the sequence must contain a new vertex because of (6), thus any se-
quence is finite. Consider two sequences B1, . . . Bk and C1, . . . Cl obtained from U as in the
previous definition. Fix S := C1∪. . .∪Cl: we will show thatBi ⊆ S for all i. This implies that
the union of the first sequence is included in the union of the second. By swapping sequences
we also have the reverse inclusion. Thus any two different sequences give rise to the same
support.

We proceed by induction on i. Notice the fact (immediate from the definition) that if
X  U Y then Z∪X  U Y for any Z. Thus ∅ U B1 implies S  U B1. This meansB1 ⊆ S
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otherwise the second sequence would not be maximal. For i > 0 we know
(⋃

j<iBj

)
 U Bi.

By inductive hypothesis
(⋃

j<iBj

)
⊆ S thus S  U Bi which again implies Bi ⊆ S because

of the maximality of S.

Fact 2. If Sup(U) := B1 ∪ . . . ∪Bk then for any 1 ≤ i ≤ k, Γ(B1 ∪ . . . ∪Bi) ⊆ U .

Proof. By induction on i. If i = 1 then Γ(B1) ⊆ U by definition. For i > 1 any v ∈
Γ(B1 ∪ . . .∪Bi) is either in Γ(B1 ∪ . . .∪Bi−1) or in Γ(Bi) \ (B1 ∪ . . .∪Bi−1). In the former
case v ∈ U by inductive hypothesis. In the latter case v ∈ U because of equation (5).

Let us discuss briefly the intuition behind the definition of support. To infer equations
from GOP(G) we use the hypothesis that some vertices are not local minimums. To deduce
a useful equation about a monomial t a proof uses either knowledge about vertices in t, or
knowledge about vertices appearing in previous steps in order to take advantage of monomial
cancellation. Each set in the sequence should capture a local deduction (i.e. based on small sets
of vertices), and the support roughly estimates the knowledge required for the whole sequence.
The following lemma says that if the underlying graph is an expander then all low degree
monomials have small supports.

Lemma 3. If a set U has size less than or equal to cr/2 then Sup(U) has size less than or
equal to r/2. If a monomial t has degree less than or equal to cr/4 then Sup(t) has size less
than or equal r/2.

Proof. Let Sup(U) = I1 ∪ I2 ∪ I3 ∪ · · · ∪ Il where each Ii is the set added in the i-th step
of the inference. If the size of Sup(U) is bigger than r/2, then there is a step j where r/2 is
overcome. Let us denote A = I1 ∪ . . . ∪ Ij−1 and I = Ij . Then |A| ≤ r/2 and |A ∪ I| > r/2.
Also |I| ≤ r/2 because of the size constraint in the definition of U . Then |A ∪ I| ≤ r and
hence |Γ(A ∪ I)| > cr/2 because of the vertex expansion of the graph . This proves the first
part of the claim since Γ(A ∪ I) ⊆ U as shown in Fact 2.

The second part follows since the number of vertices appearing in term t is at most twice
the degree of t.

So far we have shown that a low degree monomial has small support, but this is not suf-
ficient. We need to show that the support captures the reasoning power of local deductions.
Consider a fixed monomial t and a locally deducible equation t − p = 0 with p <P t. For any
vertex v which is not in the support of t, we show that equation Mv is not needed to deduce
t−p = 0. To do this we observe that v has a neighbour u which is completely irrelevant for the
local deduction. By assigning u to be a global minimum, we restrict Mv to 0 without changing
the deduction. In Lemma 4, 5, 6 we show that we can remove superfluous premises one by one.
This implies that local deductions are actually captured by the support. By the expansion of the
graph we know that support in a low degree proof is small, and in particular it is insufficient for
a refutation.

A partial assignment ρ to the variables of GOP(G) is a u-cta (critical truth assignment)
when it sets u as a global minimum and leaves unassigned all other variables.

ρ =

{
xa,u = 0 ∀a with a < u
xu,a = 1 ∀a with u < a

10



Lemma 4. Let t be a monomial. For any set of vertices A of size less than or equal to r/2
and such that A 6⊆ Sup(t), there exists an edge {u, v} in G such that v ∈ A \ Sup(t), u 6∈
Sup(t) ∪ A ∪ V ertex(t).

Proof. By definition of Sup(t) and the hypothesis, it follows that Sup(t) 6 V ertex(t) A. Then
Γ(A) 6⊆ Sup(t)∪V ertex(t), therefore there is a vertex u in Γ(A) \ (Sup(t)∪V ertex(t)). Let
v be a neighbour of u in A, then v 6∈ Sup(t) because of Fact 2.

Lemma 5. Let t be a monomial. Let I be a set of vertices such that |I| ≤ r/2 and I ⊃ Sup(t).
Then there exists a v ∈ I \ Sup(t) such that:

RT ,MI
(t) = RT ,MI−{v}(t)

Proof. Applying Lemma 4 to t and I we get an edge {u, v} such that v ∈ I \ Sup(t) and
u 6∈ I ∪ V ertex(t). Let ρ be a u-cta. Note that any equation in T containing the vertex
u is satisfied by ρ. Any other equation in T is not touched, so T �ρ⊆ T . Moreover since
u 6∈ V ertex(t), t �ρ= t. Finally note that MI �ρ⊆ MI−{v} since ρ is setting to 0 at least Mv.
Recall that if A ` p and B ⊇ A then B ` p. Thus we have the following derivations:

T ,MI ` t−RT ,MI
(t) By definition of RE (7)

T �ρ,MI �ρ ` t�ρ −RT ,MI
(t)�ρ By restriction from (7) (8)

T ,MI−{v} ` t−RT ,MI
(t)�ρ By previous observations on (8) (9)

From (9) and minimality of the residue we then have that RT ,MI−{v}(t) ≤P RT ,MI
(t) �ρ.

Moreover, since T ,MI ` t − RT ,MI−{v}(t), we have that RT ,MI
(t) ≤P RT ,MI−{v}(t), also by

minimality. Finally RT ,MI
(t) �ρ≤P RT ,MI

(t) holds since a restriction can only decrease the
order of a polynomial. Hence it must be RT ,MI−{v}(t) = RT ,MI

(t).

We have shown that from any local deduction we can remove at least one of the superfluous
assumptions. As an immediate corollary we get that any vertex out of the support is superfluous
(at least when we limit ourselves to local deductions!).

Lemma 6. Let t be a monomial. For any set of vertices I of size less than or equal to r/2 and
such that I ⊇ Sup(t), the following holds:

RT ,MI
(t) = RT ,MSup(t)

(t)

Proof. If I = Sup(t) then RT ,MI
(t) = RT ,MSup(t)

(t). If I is strictly bigger than S, then by
Lemma 5 there is a vertex v ∈ I \ Sup(t) such that RT ,MI

(t) = RT ,MI−{v}(t). The lemma
follows by induction on the size of I \ Sup(t).

Next lemma is only a technical detail: it says the obvious fact that deductions do not need
to introduce any vertex which is not in the support and in the original monomial.

Lemma 7. For any term t, V ertex(RT ,MSup(t)
(t)) ⊆ Sup(t) ∪ V ertex(t).

Proof. Assume for the sake of contradiction that there is a vertex u ∈ V ertex(RT ,MSup(t)
(t))

not in V ertex(t) ∪ Sup(t). Consider a u-cta ρ. By an argument analogous to that of Lemma 5
we have RT ,MSup(t)

(t) ≤P RT ,MSup(t)
(t)�ρ<P RT ,MSup(t)

(t).

11



We are ready to give the proof of Lemma 2.

Proof. Lemma 2
For any monomial t, the linear operator L(t) is defined by

L(t) := RT ,MSup(t)
(t)

and is extended by linearity to any polynomial. We prove that this operator satisfies the three
claimed requirements.

Requirement 1. For any polynomial p ∈ GOP(G), L(p) = 0.

Let p =
∑
βiti in T . By definition L(p) =

∑
βiL(ti) ≤P

∑
βiRT (ti) = RT (p) = 0. For

any equation Mv let Mv = t + w, where t is the leading term. Since Γ(v) ⊆ V ertex(t), then
v ∈ Sup(t). Hence L(v) = L(t) +L(w) ≤P RMv(t) +L(w) = −w+L(w) ≤P −w+w = 0.

Requirement 2. For any term t of degree strictly less than cr
4

and any variable x, it is true
that L(xt) = L(xL(t)) .

Notice that by monotonicity of Sup function, Sup(xt) ⊇ Sup(t). Moreover since deg(xt) ≤
cr
4

, then by Lemma 3 we get |Sup(xt)| ≤ r/2. Therefore we have the following chain of equal-
ities:

L(xt) = RT ,MSup(xt)
(xt) by definition (10)

= RT ,MSup(xt)
(xRT ,MSup(xt)

(t)) by Property 1 of residue (11)

= RT ,MSup(xt)
(xRT ,MSup(t)

(t)) by monotonicity of Sup and Lemma 6 (12)

= RT ,MSup(xt)
(xL(t)) by definition (13)

Let us write xL(t) as a polynomial
∑
αiri. The following inclusions hold respectively: in

(14) because ri is a monomial in the polynomial expansion of xL(t); in (15) by Lemma 7; in
(16) by monotonicity of Sup.

V ertex(ri) ⊆ V ertex(x) ∪ V ertex(L(t)) (14)
⊆ V ertex(x) ∪ V ertex(t) ∪ Sup(t) (15)
⊆ V ertex(xt) ∪ Sup(xt) (16)

From the definition of Sup and the previous inclusions it follows that Sup(ri) ⊆ Sup(xt).
Finally the second requirement follows from the following chain of equalities.

L(xL(t)) =
∑

αiRT ,MSup(ri)
(ri) by definition (17)

=
∑

αiRT ,MSup(xt)
(ri) by Lemma 6 applied to Sup(ri) and Sup(xt) (18)

= RT ,MSup(xt)
(
∑

αiri) by linearity (19)

= RT ,MSup(xt)
(xL(t)) by rewriting xL(t) (20)

= L(xt) by equalities (10)-(13) (21)

Requirement 3. Observe that the support of a constant polynomial is the empty set, so
L(1) = RT (1) = 1 since T is satisfiable.

12



We conclude the section by claiming that there are indeed infinite families of graphs with
the desired properties. This implies that there are actual formulas for which both upper and
lower bounds applies.

Theorem 2. There exists an infinite family G of simple graphs of constant degree such that
for any G in G the principle GOP(G) has polynomial size in |V (G)| and any PC refutation of
GOP(G) requires degree at least |V (G)|

108
.

Proof. Fix any integer t. By Proposition 1 we can construct a 9-regular graph G of n := 81t

vertices, such that G is a (n
2
, 1

2
)-edge expander. Since G is 9-regular, it is also a (n/2, 1/18)-

vertex expander. To obtain a simple graph without losing vertex expansion it is sufficient to
collapse multi-edges in simple edges. By Theorem 1 the theorem follows.

3.1 Optimality of Size vs Degree Trade-offs
There exists a relation between the smallest size S and smallest degree D of a proof in Poly-
nomial Calculus and Polynomial Calculus with Resolution. Let d be the degree of polynomials
used to formulate the principle and m the number of its variables, then in [13, 2] it is shown:

S ≥ 2Θ(
(D−d)2
m

) D ≤ Θ(
√
m logS)

thus GOP(G) is tight in term of the exponent because it has m = Θ(n2), D = Θ(
√
m),

d = O(1) and S = mO(1).

We state the simulation Theorem of Clegg, Edmonds and Impagliazzo [13]:

Theorem 3. ([13]) If a set of clauses F over n variables and of width at most k, has a dag-like
resolution refutation of size S, then the set of polynomials encoding F has a PC refutation of
degree at most 3

√
n loge S + k + 1.

The trade-off of the previous Theorem is optimal, since there is a trivial resolution proof
of size O(2n) for the PHP n+1

n , and Razborov in [21] shows that PHPm
n requires Ω(n) de-

gree PC refutations for any m > n. Notice that this optimality result uses formulas requiring
exponential size in Resolution.

Bonet and Galesi in [8, 10] asked to prove the optimality of the trade-off with formulas
having polynomial size refutations. They show partial results in this direction proving that
a modification of the pigeonhole principle has efficient refutations in Resolution but requires
degree Ω(log n).

Our result on GOP(G) exponentially improves that result: it shows a square root degree
lower bound for a formula with efficient refutations in Resolution and PCR. Notice that op-
timality of the trade-off is true for PC even if PC would require exponential size to simulate
such efficient refutation of GOP(G). This is not an issue because PCR proof system is nothing
else than PC with more axioms and variables. Thus we can extend GOP(G) with these missing
bits. The resulting principle has obviously an efficient refutation and a square root degree lower
bound.
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4 Extending Polynomial Calculus to k-DNF’s: PCRk

To study the complexity of proofs in PCRk we follow the approach used by Segerlind et al. in
[24] for RESk. In [24] they prove a Switching Lemma: with high probability any k-DNF is
restricted to a shallow decision tree by a random assignment. This easily translates to Lemma
8 where we deal with k-monomials restricted into low degree multilinear polynomials. So, as
Segerlind et al. in [24] reduce size lower bounds for RESk to width lower bounds for Resolution,
we can reduce size lower bounds for PCRk to degree lower bounds for PC.

4.1 Boolean functions, polynomials and Switching Lemma
We consider boolean polynomials on the field F, i.e. polynomials defined on the domain
{0, 1}n, that is elements of the ring F[x1, . . . , xn]/{x2

i − xi}i∈[n]. We say that a boolean poly-
nomial p on a field F[x1, . . . xn], represents a boolean function F over variables x1 . . . , xn and
with values in F, if p and F agree on all possible assignments to their variables. We state the
following easy facts about boolean polynomials.

Proposition 2. The following hold:

• Any function on {0, 1}n with values in F has a unique representation in terms of boolean
polynomials.

• If a boolean function F is computed by a decision tree of height h, then there is a boolean
polynomial representing F with degree less than or equal to h.

Proof. (1) For any α ∈ {0, 1}n consider the boolean function χα which is 1 on α and 0 ev-
erywhere else, and the multilinear polynomial pα :=

∏
αi=0(1 − xi)

∏
αi=1 xi. A map from

χα to pα induces an injective homomorphism between vector spaces, because linear indepen-
dent functions are mapped to linear independent polynomials. It is also a bijection because
the spaces have the same dimension. (2) Consider a leaf l of the decision tree. Let vl be
the value of the function, and φl be the conjunction of width at most h which is true if and
only if the decision tree evaluates to the leaf l: φl is computable by the boolean polynomial
pl :=

∏
x̄i∈φl(1− xi)

∏
xi∈φl xi. Clearly F is computed by the polynomial

∑
l vlpl.

For a function F on boolean variables we define the concept of semantic degree sdeg(F ) as
the degree of the boolean polynomial representing F . By the previous proposition the semantic
degree of a boolean function is well-defined and is less than or equal to the minimal height of
a decision tree representing F .

Definition 3. Let τ be a k-monomial on {x1, . . . , xn} we call c(τ) the size of the smallest set of
variables containing at least one variable from every factor of τ . We call c the covering number
of τ .

Recall Corollary 3.4 in [24]. It says that a random restriction chosen according to an ap-
propriate distribution decreases the height of decision tree for a k-DNF with good probability.
Here a k-DNF is equivalent to a k-monomial and the covering number is defined accordingly.
We also know that its semantic degree is lower than the height of its decision tree. Thus we can
correctly rephrase the corollary in our terminology.
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Lemma 8. ( Corollary 3.4 [24]) Let k, s, d be positive integers, let γ and δ be real numbers
from the range (0, 1], and let D be a distribution on partial assignments so that for every k-
monomial m, Prρ∈D[m�ρ 6= 0] ≤ d2−δ(c(m))γ . Then for every k-monomial M ,

Pr
ρ∈D

[sdeg(M �ρ) > 2s] ≤ dk2−δ
′sγ
′

where δ′ = 2(δ/4)k and γ′ = γk.

4.2 Relations between PCRk and PC, PCR, RES, RESk

Our point of view to study the connection between PCRk and PC is the degree measure. We
say that the semantic degree of a PCRk proof Π (denoted as sdeg(Π)) is the maximum among
the semantic degree of all lines in the proof. We also denote as p∗ the boolean polynomial
representation of a k-polynomial p.

Lemma 9. 1. For any k-polynomial p, ` p− p∗ in PCRk.

2. PCRk is complete.

3. Any CNF refutation Π in PCRk can be simulated by a proof Γ in PC or PCR such that
deg(Γ) ≤ sdeg(Π) + k.

Proof. (1) It is sufficient to prove the first statement holds for a k-monomials m. We proceed
by induction on the number of factors. We denote here the generic factor as (1−

∏
x). Ifm has

one factor then the statement is an axiom of PCRk. Consider now a k-monomial (1 −
∏
x)m.

By induction m−m∗ is deducible, thus we get (1−
∏
x)m− (1−

∏
x)m∗ by multiplication

rule. From axiom (1 −
∏
x) − 1 +

∏
x we get (1 −

∏
x)m∗ − m∗ +

∏
xm∗ by applying

multiplications and sums. By another sum rule we obtain (1 −
∏
x)m −m∗ +

∏
x m∗. We

complete the derivation by applying PCR boolean axioms on the expanded part to eliminate
from it negated variables and non-multilinear term. By soundness of PCRk and uniqueness of
the representation this is the boolean polynomial p∗.

(2) f1, . . . , fn |= g implies f ∗1 , . . . , f
∗
n |= g∗. By completeness of PC we get f ∗1 , . . . , f

∗
n ` g∗.

Finally by using (1) we can prove f1, . . . , fn ` g.
(3) The formulas encoding a CNF in PCRk are also proper lines if a PC proof. Now consider

a refutation Π = {pi}i of the encoded CNF. We show how to derive p∗i in PC. This is sufficient
because 1∗ = 1. If pi is a premise then p∗i = pi. If pi is an axiom, then either it is an axiom in
PCR or it is a parenthesis axiom. In both cases p∗i = 0. If pi = pa + pb then p∗i = p∗a + p∗b . If
pi = xpa (pi = x̄pa) then p∗i is the multilinearization of xp∗a (p∗a − xp∗a). If pi = (1 −

∏
x)pa

then the product of (1−
∏
x)∗ and p∗a can be obtained and multilinearized in PCR. In all such

derivations the degree is always lower than deg(p∗a)+k which is less or equal than sdeg(pa)+k.
Notice that any proof in PC is also a proof in PCR.

Fact 3. Let Π be a RESk refutation of a CNF F . Let pF be the set of polynomials arising from
the polynomial translation of F . Then there are PCRk refutation Γ of pF such that S(Γ) =
O(2kS(Π)O(1)).

Proof. We refer to names and notation of RESk rules given in preliminaries (see (2.2)). Weak-
ening rule is simulated by multiplication rule. For the other three rules consider the case in
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which A and B are empty DNFs: by completeness these rules can be easily simulated in size
O(2k) and degree k because they involve at most k original variables. Consider now non-empty
k-DNFs A,B and the corresponding k-monomials mA,mB. Observe that if p1, · · · pl ` q then
mAp1, · · ·mApl ` mAq in PCRk in the same size. Also if p1, p2 ` q then mAp1,mBp2 `
mAmBp1,mAmBp2 ` mAmBq in size equal to the original plus the number of factors of mA

and mB. Now if F is the empty k-DNF then pF is 1. Thus the simulation is complete.

5 Lower bounds for PCRk

We give size lower bounds for PCRk refutations. Size vs Degree and Size vs Width trade-offs
are powerful tools for proving size lower bounds in PC and Resolution respectively. Stronger
proof systems like RESk and Bounded Depth Frege (a sequent system in which formulas have
constant depth) require different ideas. Consider two proof systems PH and PL, where PH is
stronger than PL. The following pattern has been fruitful for proving size lower bounds for PH :

• Show a formula FL which requires high complexity in the proof system PL.

• Consider a distribution of partial assignments that with good probability restricts any line
of PH to a low complexity line in PL.

• Consider a formula FH such that the distribution restricts FH to a formula which is effi-
ciently deducible from FL.

• Notice that such a restriction turns a PH refutation into a PL refutation.

• A small PH refutation of FH is turned into a low complexity PL refutation of FL with
positive probability. That is a contradiction.

In [7] there are several examples in which PH and PL are both Resolution, and the width is
considered as measure of complexity in PL. The case of PL different from PH is more interest-
ing. The size lower bound for random CNF refutations in [1] is achieved with PH :=RESk and
PL :=Resolution. In [1] a distribution of partial assignments is shown which restricts k-DNFs
to CNF of small width with high probability. In this case FH and FL are random CNF with
different density.

For this strategy to work we need the partial assignments to be weak enough to maintain
hardness in FL, and strong enough to reduce PH lines to small complexity PL lines. Of course
such conflicting conditions cannot always be met. For example GOP(G) is not hard after a
restriction because the underlying graph would lose expansion. Thus a width/degree lower
bound for GOP(G) does not imply size lower bounds for Resolution or PC (there aren’t!). In
[24] and in the following subsection this problem has been overcome by considering a more
complex version of GOP(G) in which any variable is substituted by a XOR of several new
disjoint variables. A restriction fixes all variables but one for each XOR. The resulting formula
is essentially GOP(G), thus hardness against Resolution width is preserved. Furthermore (and
this is the most important result of [24]) this restriction transforms a k-DNF in a CNF of small
width with high probability.
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5.1 A separation between PCRk and PCRk+1

In this section we will give a variant of GOP(G), which is polynomially refutable by PCRk+1

but it is not polynomially refutable by PCRk. We closely follows the ideas developed for RESk
in [24].

Let Even(a1, . . . , ak) be the function from {0, 1}k to {0, 1} which gives 0 if the number of
input variables at 0 are even. Such function can be written as a 2k−1 size multilinear polynomial
with degree k.

For each variable xa,b of GOP(G) we introduce k new variables x1
a,b, . . . , x

k
a,b. GOP⊕k(G)

is defined as a modification of GOP(G): substitute any xa,b with Even(x1
a,b, . . . , x

k
a,b). Such

principle is specified by kd degree polynomials with less than 2dk monomials each, where d is
the degree of G. We now give a polynomial refutation in PCRk for GOP⊕k(G).

Since for any graph G, GOP⊕k(G) has a polynomial size refutation in RESk [24], then by
Fact 3 it follows:

Proposition 3. For any graph G, GOP⊕k(G) has a polynomial size refutation in PCRk.

We now prove the lower bound for PCRk. Following [24], given a graph G, we consider the
distribution Dk+1(G) on partial assignments on variables of GOP⊕k+1(G) defined as follows:
for any variable xa,b of GOP(G), select uniformly and independently i ∈ [k + 1] and then for
all j ∈ [k+1]−{i} uniformly and independently assign a {0, 1} value to xja,b. The next lemma
guarantees the applicability of the switching lemma and was proved in [24] for k-DNF. We
rephrase it in terms of k-monomials, but its proof is exactly the same.

Lemma 10. ([24]) Let k be given and let m be a k-monomial on the variables of GOP⊕k+1(G)
with their negations. There exists a constant γ > 0 which dependent only on k, such that

Pr
ρ∈Dk+1(G)

[m�ρ 6= 0] < 2−γc(m)

Notice that when we apply a restriction ρ ∈ Dk+1(G) to GOP⊕k+1(G) we do not always
reduce exactly to GOP(G). It could happen that some variables have the opposite polarity.
Anyway it is clear that from a PCR refutation of GOP⊕k+1(G)�ρ we can reconstruct a PCR proof
of GOP(G) of the same degree. Hence applying Theorem 1 we have the following Corollary.

Corollary 1. Let G be an (r, c)-vertex expander. Then for all k ≥ 1 and for all ρ ∈ Dk+1(G),
there are no PC refutations of GOP⊕k+1(G)�ρ of degree less than or equal to cr/4.

Theorem 4. Let G be (δn, c)-vertex expander on n vertices, for some δ > 1. Let k ≥ 1, there
exists a constant εk,c, such that any PCRk refutation of GOP⊕k+1(G) contains at least 2εk,cn

k-monomials.

Proof. Let r = δn. By Lemma 10 applying the Switching Lemma setting h = (rc/4− k), we
have that for any k-monomial m,

Pr
ρ∈Dk+1(G)

[sdeg(m�ρ) > (rc/4− k)] ≤ k2−( γ
4

)(rc/4−k)

Hence there exists a constant εk,c such that

Pr
ρ∈Dk+1(G)

[sdeg(m�ρ) > (rc/4− k)] ≤ 2−(εk,cn)
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Assume that there is PCRk refutation of GOP⊕k+1(G) of size strictly less than 2−(εk,cn), then by
the union bound there is a PCRk refutation Π of GOP⊕k+1(G)�ρ with sdeg(Π) ≤ (rc/4 − k).
Hence by Lemma 9 there is a PC refutation of GOP⊕k+1(G)�ρ of degree ≤ rc/4. This is in
contradiction with Corollary 1.

Using the family of vertex expanders defined at the end of Section 3, the previous theorem
and Proposition 3 give the following exponential separation.

Corollary 2. There is a family of contradictions F over n variables which exponentially sep-
arates PCRk from PCRk+1: there are polynomial size refutations of F in PCRk+1 and any
refutation of F in PCRk requires exponential size.

5.2 Lower bounds for random formulas in PCRk

We will prove a lower bound on the number of k-monomials needed to refute a random 3-CNF
in PCRk. Since to get lower bounds for random formulas we use the result in Alekhnovich[1]
applied on k-monomials instead of k-DNFs, we are not giving any proof (the interested reader
can find them in the ECCC version of the paper [15]). We give the necessary definitions to
describe our random formulas and then we state the main theorem. We assume here that the
systems PC, PCR and PCRk are defined over a field of characteristic different from 2.

Definition 4. ([2, 3, 1]) Let A be a m × n boolean matrix. For a set of rows I we define the
boundary of I (denoted as ∂I) as the set of all j ∈ [n] (the boundary elements) such that there
exists exactly one row i ∈ I that contains j. Then, A is an (r, c)-expander if the following
condition holds: for all I ⊆ [m], if |I| ≤ r, then |∂I| ≥ c · |I|.

Let φn,∆ be the random 3-CNF obtained selecting ∆n clauses uniformly from the set of all
possible 3-clauses over n variables. Following [1], instead of proving a lower bound for φn,∆
refutations, we will prove it for a polynomial encoding of a set of linear mod 2 equations,
which semantically implies φn,∆.

For each possible formula φn,∆ consider the matrix Aφn,∆ defined by Aφn,∆ [i, j] = 1 iff
the i-th clause of φn,∆ contains the variable xj . Let bφn,∆ be the boolean m vector defined
by bφn,∆ [i] = (# of positive variables in the i-the clauses) mod 2. The random system of linear
equations we consider is the system defined by Aφn,∆x = bφn,∆ .

Given a system of linear equations Ax = b, we define its polynomial encoding Poly(A, b)
as follows: for each equation ` ∈ Ax = b, let f` is the characteristic function of ` that is 0 if
and only if the equation is satisfied. Let ˜̀ be the unique multilinear polynomial representing
the function f`. Then Poly(A, b) =

⋃
`∈Ax=b

˜̀. Notice that deg(˜̀) = 3.

Lemma 11. Each PCRk refutation of φn,∆ can be transformed into a PCRk refutation of the
system of equations Poly(Aφn,∆ , bφn,∆) with a polynomial increase in the size.

Proof. Any equation ` in Aφn,∆x = bφn,∆ semantically implies the clause C in φn,∆, from
which ` arose. Then by completeness we have a PCRk proof of the polynomial encoding of C
from ˜̀.

The following observation is crucial to find 3-CNF which are hard for PC, PCR, PCRk
refutation systems. Such result has been rephrased and used many times (see [7, 11, 6, 3, 1, 2]).
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Theorem 5. ([12],[3]) For all constant ∆ > 0 and for all c < 1, let φn,∆ be a random 3-CNF
of n variables and ∆n clauses. Then with probability 1−o(1),Aφn,∆ is a ( n

∆2/(1−c) , c)-expander.

The reason we consider the expansion of a random 3-CNF (of the corresponding linear
system) is the following theorem, stating that expanders need high degree to be refuted by PC

and PCR. We will use this theorem in our main theorem, since, through the Switching Lemma,
we can reduce size lower bounds for PCRk to degree lower bounds for PCR.

Theorem 6. (Theorem 3.10 in [2]) Given an unsatisfiable linear system Ax = b where A is an
(r, c)-boundary expander, any PCR refutation of Poly(A, b) in a field F with characteristic 6= 2
requires degree ≥ rc

4
.

The following theorem follows from Lemma 8 and Theorem 6. The proof is essentially the
same as the corresponding lower bound for RESk in [1]. Since this proof has already appeared
in [1] for RESk and in Section 4 of [15] for PCRk, we only give a sketch here.

Theorem 7. For any constant ∆ let φn,∆ be a random 3-CNF on n variables and ∆n clauses.
For k = o(

√
log n/ log log n) any refutation of φn,∆ in PCRk over a field with characteristic

different from 2, has size S > 2n
1−o(1)

with high probability.

Proof. (Sketch) Consider φn,∆ and the relative system Aφn,∆x = bφn,∆ . By Theorem 5 the
system is an (r, c)-expander with r = O(n) and c = O(1). In [1] it is defined a random partial
assignment which satisfies the requirements of Lemma 8 and also maintains the restricted sys-
tem to be an (r/4, c/4)-expander. Assume there exists a small PCRk refutation for φn,∆ (and
for Aφn,∆x = bφn,∆ by Lemma 11) then with positive probability the restricted proof has small
semantic degree. This and Lemma 9 would give a small degree PC refutation for the restricted
system, which contradicts Theorem 6.
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