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Abstract. During the last decade, an active line of research in proof
complexity has been into the space complexity of proofs and how space
is related to other measures. By now these aspects of resolution are fairly
well understood, but many open problems remain for the related but
stronger polynomial calculus (PC/PCR) proof system. For instance, the
space complexity of many standard “benchmark formulas” is still open,
as well as the relation of space to size and degree in PC/PCR.

We prove that if a formula requires large resolution width, then making
XOR substitution yields a formula requiring large PCR space, providing
some circumstantial evidence that degree might be a lower bound for
space. More importantly, this immediately yields formulas that are very
hard for space but very easy for size, exhibiting a size-space separation
similar to what is known for resolution. Using related ideas, we show
that if a graph has good expansion and in addition its edge set can be
partitioned into short cycles, then the Tseitin formula over this graph
requires large PCR space. In particular, Tseitin formulas over random
4-regular graphs almost surely require space at least Ω

`√
n

´
.

Our proofs use techniques recently introduced in [Bonacina-Galesi ’13].
Our final contribution, however, is to show that these techniques prov-
ably cannot yield non-constant space lower bounds for the functional
pigeonhole principle, delineating the limitations of this framework and
suggesting that we are still far from characterizing PC/PCR space.

1 Introduction

Proof complexity studies how hard it is to provide succinct certificates for tauto-
logical formulas in propositional logic—i.e., proofs that formulas always evaluate
to true under any truth value assignment, where these proofs are verifiable in
time polynomial in their size. It is widely believed that there is no proof sys-
tem where such efficiently verifiable proofs can always be found of size at most
polynomial in the size of the formulas they prove. Showing this would establish
NP 6= co-NP, and hence P 6= NP, and the study of proof complexity was initiated
by Cook and Reckhow [16] as an approach towards this (still very distant) goal.



A second prominent motivation for proof complexity is the connection to
applied SAT solving. By a standard transformation, any propositional logic for-
mula F can be transformed to another formula F ′ in conjunctive normal form
(CNF) such that F ′ has the same size up to constant factors and is unsatisfi-
able if and only if F is a tautology. Any algorithm for solving SAT defines a
proof system in the sense that the execution trace of the algorithm constitutes
a polynomial-time verifiable witness of unsatisfiability (such a witness is often
referred to as a refutation rather than a proof , and we will use the two terms
interchangeably in this paper). In the other direction, most modern SAT solvers
can in fact be seen to search for proofs in systems studied in proof complex-
ity, and upper and lower bounds for these proof systems hence give information
about the potential and limitations of such SAT solvers.

In addition to running time, a major concern in SAT solving is memory
consumption. In proof complexity, these two resources are modelled by proof
size/length and proof space. It is thus interesting to understand these complexity
measures and how they are related to each other, and such a study reveals
intriguing connections that are also of intrinsic interest to proof complexity. In
this context, it is natural to focus on proof systems at comparatively low levels
in the proof complexity hierarchy that are, or could plausibly be, used as a basis
for SAT solvers. Such proof systems include resolution and polynomial calculus.
This paper takes as its starting point the former system but focuses on the latter.

Previous Work The resolution proof system was introduced in [12], and is at
the foundation of state-of-the-art SAT solvers based on so-called conflict-driven
clause learning (CDCL) [4, 23]. In resolution, one derives new disjunctive clauses
from the clauses of the original CNF formula until contradiction is reached. One
of the early breakthroughs in proof complexity was the (sub)exponential lower
bound on proof length (measured as the number of clauses in a proof) obtained
by Haken [19]. Truly exponential lower bounds—i.e., bounds exp(Ω(n)) in the
size n of the formula—were later established in [14, 25] and other papers.

Ben-Sasson and Wigderson [11] identified width as a crucial resource, where
the width is the size of a largest clause in a resolution proof. They proved that
strong lower bounds on width imply strong lower bounds on length, and used
this to rederive essentially all known length lower bounds in terms of width.

The study of space in resolution was initiated by Esteban and Torán [17],
measuring the space of a proof (informally) as the maximum number of clauses
needed to be kept in memory during proof verification. Alekhnovich et al. [1]
later extended the concept of space to a more general setting, including other
proof systems. The (clause) space measure can be shown to be at most linear in
the formula size, and matching lower bounds were proven in [1, 8, 17].

Atserias and Dalmau [3] proved that space is in fact lower-bounded by width,
which allowed to rederive all hitherto known space lower bounds as corollaries
of width lower bounds. A strong separation of the two measures was obtained
in [9], exhibiting formulas with constant width complexity but almost linear
space complexity. Also, dramatic space-width trade-offs have been shown in [7],
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with formulas refutable in constant width and constant space where optimizing
one of the measures causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [3]
that formulas of low space complexity also have short proofs. For the subsys-
tem of tree-like resolution, where each line in the proof can only be used once,
[17] showed that length upper bounds also imply space upper bounds, but for
general resolution [9] established that this is false in the strongest possible sense.
Strong trade-offs between length and space were proven in [5, 10].

This paper focuses on the more powerful polynomial calculus (PC)3 proof
system [15], which is not at all as well understood. In a PC proof, clauses are
interpreted as multilinear polynomials (expanded out to sums of monomials), and
one derives contradiction by showing that these polynomials have no common
root. Intriguingly, while proof complexity-theoretic results seem to hold out the
promise that SAT solvers based on PC could be orders of magnitude faster than
CDCL, such algebraic solvers have so far failed to be truly competitive.

Proof size4 in PC is measured as the total number of monomials and the
analogue of resolution space is the number of monomials needed in memory
during verification of a proof. Resolution width translates into polynomial degree
in PC. While length, space and width in resolution are fairly well understood,
our understanding of the corresponding measures in PC is much more limited.

Impagliazzo et al. [21] showed that strong degree lower bounds imply strong
size lower bounds. This is a parallel to the length-width relation in [11], and in
fact this latter paper can be seen as a translation of [21] from PC to resolution.
This size-degree relation has been used to prove exponential lower bounds on
size in a number of papers, with [2] perhaps providing the most general setting.

The first lower bounds on space were reported in [1], but only sublinear
bounds and only for formulas of unbounded width. The first space lower bounds
for k-CNF formulas were presented in [18], and asymptotically optimal (linear)
lower bounds were finally proven by Bonacina and Galesi [13]. However, there
are several formula families with high resolution space complexity for which the
PC space complexity has remained unknown, e.g., Tseitin formulas (encoding
that the sum of all vertex degrees in an undirected graph must be even), ordering
principle formulas, and functional pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is
a lower bound for space (the analogue of what holds in resolution) and also it has
been unknown whether the two measures can be separated in the sense that there
are formulas of low degree complexity requiring high space. However, [6] recently
proved a space-degree trade-off analogous to the resolution space-width trade-off
in [7] (in fact for the very same formulas). This could be interpreted as indicating

3 Strictly speaking, to get a stronger proof system than resolution we need to look
at the generalization PCR as defined in [1], but for simplicity we will be somewhat
sloppy in this introduction in distinguishing between PC and PCR.

4 The length of a proof is the number of lines, whereas size also considers the size
of lines. In resolution the two measures are essentially equivalent. In PC size and
length can be very different, however, and so size is the right measure to study.

3



that there should be a space-degree separation analogous to the space-width
separation in resolution, and the authors of [13] suggest that their techniques
might be a step towards understanding degree and proving that degree lower-
bounds space, similar to how this was done for resolution width in [3].

As to size versus space in PC, essentially nothing has been known. It is open
whether small space complexity implies small size complexity and/or the other
way around. Some size-space trade-offs were recently reported in [6, 20], but
these trade-offs are weaker than the corresponding results for resolution.

Our Results We study the relation of size, space, and degree in PC (and the
stronger system PCR) and present a number of new results as described below.

1. We prove that if the resolution width of refuting a CNF formula F is w, then
by substituting each variable by an exclusive or of two new variables and
expanding out we get a new CNF formula F [⊕] requiring PCR space Ω(w).
In one sense, this is stronger than claiming that degree is a lower bound for
space, since high width complexity is a necessary but not sufficient condition
for high degree complexity. In another sense, however, this is (much) weaker
in that XOR substitution can amplify the hardness of formulas substantially.
Nevertheless, to the best of our knowledge this is the first result making any
connection between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between
length and degree on the one hand and space on the other. Namely, taking
expander graphs and making double copies of all edges, we show that Tseitin
formulas over such graphs have proofs in size O(n log n) and degree O(1) in
PC but require space Θ(n) in PCR. (Furthermore, since these small-size
proofs are tree-like, this shows that there is no tight correlation between size
and space in tree-like PC/PCR in contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin
formulas over (simple or multi-)graphs where the edge set can be partitioned
into small cycles. (The two copies of every edge in the multi-graph above form
such cycles, but this works in greater generality.) In particular, for Tseitin
formulas over random d-regular graphs for d ≥ 4 we establish that an Ω(

√
n)

PCR space lower bound holds asymptotically almost surely.
4. On the negative side, we show that the techniques in [13] cannot prove

any non-constant PCR space lower bounds for functional pigeonhole princi-
ple (FPHP) formulas. That is, although these formulas require high degree
and it seems plausible that they are hard also with respect to space, the
machinery developed in [13] provably cannot establish such lower bounds.
Unfortunately, this seems to indicate that we are further from characterizing
degree in PC/PCR than previously hoped.

Organization of This Paper The rest of this paper is organized as follows.
We briefly review preliminaries in Section 2. In Section 3, we give a more de-
tailed overview of our results and sketch some proofs. Section 4 contains some
concluding remarks. Due to space constraints, most of the proofs are deferred to
the full-length version of this paper.
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2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal)
or its negation ¬x or x (a negative literal). It will also be convenient to use the
alternative notation x0 = x, x1 = x, where we identify 0 with true and 1 with
false5 (so that xb is true if x = b). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals. We denote the empty clause by ⊥. A clause containing at most k literals
is called a k-clause. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. A k-CNF formula is a CNF formula consisting of k-clauses.

Let F be a field and consider the polynomial ring F[x, x, y, y, . . .] (where x
and x are viewed as distinct formal variables). We write [n] = {1, . . . , n}.

Definition 1 (Polynomial calculus resolution (PCR)). A PCR configura-
tion P is a set of polynomials in F[x, x, y, y, . . .]. A PCR refutation of a CNF
formula F is a sequence of configurations {P0, . . . , Pτ} such that P0 = ∅, 1 ∈ Pτ ,
and for t ∈ [τ ] we obtain Pt from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪ {p}, where p is either a monomial m =
∏

i xb
i

encoding a clause C =
∨

i xb
i ∈ F , or a Boolean axiom x2 − x or comple-

mentarity axiom x + x− 1 for any variable x (or x).
Inference Pt = Pt−1 ∪ {p}, where p is inferred by linear combination q r

αq+βr or
multiplication q

xq from polynomials q, r ∈ Pt−1 for α, β ∈ F and x a variable.
Erasure Pt = Pt−1 \ {p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the
polynomial (1− x), the proof system is called polynomial calculus (PC).

The size S (π) of a PC/PCR refutation π is the number of monomials (counted
with repetitions) in all downloaded or derived polynomials in π, the (monomial)
space Sp(π) is the maximal number of monomials (counted with repetitions)6

in any configuration in π, and the degree Deg(π) is the maximal degree of any
monomial appearing in π. Taking the minimum over all PCR refutations of a
formula F , we define the size SPCR(F ` ⊥), space SpPCR(F ` ⊥), and degree
DegPCR(F `⊥) of refuting F in PCR (and analogously for PC).

We can also define resolution in this framework, where proof lines are always
clauses (i.e., single monomials) and new clauses can be derived by the resolution
rule inferring C∨D from C∨x and D∨x. The length of a resolution refutation π
is the number of downloaded and derived clauses, the space is the maximal
number of clauses in any configuration, and the width is the size of a largest
clause appearing in π (or equivalently the degree of such a monomial). Taking
the minimum over all refutations as above we get the measures LR(F ` ⊥),
SpR(F ` ⊥), and WR(F ` ⊥). It is not hard to show that PCR can simulate
resolution efficiently with respect to all these measures.

5 Note that this is the opposite of what is found in many other papers, but as we will
see shortly it is the natural choice in the context of polynomial calculus.

6 In [1], space is defined without repetitions. All our results hold in this setting as well.
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We say that a refutation is tree-like if every line is used at most once as
the premise of an inference rule before being erased (though it can possibly be
rederived later). All measures discussed above can also be defined for restricted
subsystems of resolution, PC and PCR admitting only tree-like refutations.

Let us now describe the formulas which will be the main focus of our study.

Definition 2 (Tseitin formula). Let G = (V,E) be an undirected graph and
χ : V → {0, 1} be a function. Identify every edge e ∈ E with a variable xe and let
PARITY v,χ denote the CNF encoding of the constraint that the number of true
edges xe incident to a vertex v ∈ V is equal to χ(v) (mod 2). Then the Tseitin
formula over G with respect to f is Ts(G, χ) =

∧
v∈V PARITY v,χ.

When the degree of G is bounded by d, Ts(G, χ) is a d-CNF formula with
at most 2d−1|V | clauses. We say that a vertex set U has odd (even) charge if∑

u∈U χ(u) is odd (even). By a simple counting argument one sees that Ts(G, χ)
is unsatisfiable if V (G) has odd charge. Lower bounds on the hardness of refuting
such unsatisfiable formulas Ts(G, χ) can be proven in terms of the expansion
of G as defined next.

Definition 3 (Connectivity expansion [1]). The connectivity expansion of
G = (V,E) is the largest c such that for every E′ ⊆ E, |E′| ≤ c, the graph
G′ = (V,E \ E′) has a connected component of size strictly greater than |V |/2.

If F is a CNF formula and f : {0, 1}d → {0, 1} is a Boolean function, then we
can obtain a new CNF formula by substituting f(x1, . . . , xd) for every variable x
and expanding out to conjunctive normal form. We write F [f ] to denote the
resulting substituted formula, where we will be interested in substitutions with
a particular kind of functions defined as follows.

Definition 4 (Non-authoritarian function [10]). We say that a Boolean
function f(x1, . . . , xd) is non-authoritarian if for every xi and for every assign-
ment α to xi there exist α0, α1 extending α such that f(αb) = b for b ∈ {0, 1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authori-
tarian, since regardless of the value of one variable, the other one can be flipped
to make the function true or false, but standard non-exclusive or ∨ is not.

Let us finally give a brief overview of the framework developed in [13], which
we use to prove our PCR space lower bounds.7 A partial partition Q of a vari-
able set V is a collection of disjoint sets Qi ⊆ V . We use the notation

⋃
Q =⋃

Qi∈Q Qi. For two sets of partial assignments H and H ′ to disjoint domains, we
denote by H×H ′ the set of assignments H×H ′ = {α ∪ β | α ∈ H and β ∈ H ′}.
A set of partial assignments H to the domain Q is flippable on Q if for each
variable x ∈ Q and b ∈ {0, 1} there exists an assignment αb ∈ H such that
αb(x) = b. We say that H satisfies a formula F if all α ∈ H satisfy F .

A Q-structured assignment set is a pair (Q,H) consisting of a partial parti-
tion Q = {Q1, . . . , Qt} of V and a set of partial assignmentsH =

∏t
i=1 Hi, where

7 The actual definitions that we use are slightly different but essentially equivalent.
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each Hi assigns to and is flippable on Qi. We write (Q,H) 4 (Q′,H′) if Q ⊆ Q′

and H′�Q = H, where H′�Q =
∏

Qi∈Q H ′
i. A structured assignment set (Q,H)

respects a CNF formula F ′ if for every clause C ∈ F ′ either Vars(C) ∩
⋃
Q = ∅

or there is a set Q ∈ Q such that Vars(C) ⊆ Q and H satisfies C.
Expressed in this language, the key technical definition in [13] is as follows.

Definition 5 (Extendible family). A non-empty family F of structured as-
signment sets (Q,H) is r-extendible for a CNF formula F with respect to a
satisfiable F ′ ⊆ F if every (Q,H) ∈ F satisfies the following conditions.

Size |Q| ≤ r.
Respectfulness (Q,H) respects F ′.
Restrictability For every Q′ ⊆ Q the restriction (Q′,H�Q′) is in F .
Extendibility If |Q| < r then for every clause C ∈ F \F ′ there exists (Q′,H′) ∈

F such that 1. (Q,H) 4 (Q′,H′), 2. H′ satisfies C, and 3. |Q′| ≤ |Q|+ 1.

To prove PCR space lower bounds for a formula F , it is sufficient to find
an extendible family for F . All space lower bounds presented in this paper are
obtained in this manner, where in addition we always have F ′ = ∅.

Theorem 6 ([13]). Suppose that F is a CNF formula which has an r-extendible
family F with respect to some F ′ ⊆ F . Then SpPCR(F `⊥) ≥ r/4.

3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of
our results, and also provide some proof sketches in order to convey the main
technical ideas. As a general rule, the upper bounds we state are for polynomial
calculus (PC) whereas the lower bounds hold for the stronger system PCR.

Relating PCR Space and Resolution Width The starting point of our work
is the question of how space and degree are related in polynomial calculus, and in
particular whether it is true that degree lower-bounds space. While this question
remains wide open, we make partial progress by showing that if the resolution
width of refuting a CNF formula F is large (which in particular must be the
case if F requires high degree), then by making XOR substitution we obtain
a formula F [⊕] that requires large PCR space. In fact, this works not only for
exclusive or but for any non-authoritarian function (as defined in Definition 4).
The formal statement is as follows.

Theorem 7. Let F be a k-CNF formula and let f be any non-authoritarian
function. Then SpPCR(F [f ] `⊥) ≥ (WR(F `⊥)− k + 1)/4 holds over any field.

Proof (sketch). In one sentence, the proof of Theorem 7 is by combining the
concept of extendible families in Definition 5 with the combinatorial character-
ization of resolution width in [3]. We show that the properties of F implied by
the width lower bound can be used to construct an extendible family for F [f ].
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To make this description easier to parse, let us start by describing in somewhat
more detail the width characterization in [3].

Consider the following game played on F by two players Spoiler and Dupli-
cator . Spoiler asks about assignments to variables in F and Duplicator answers
true or false. Spoiler can only remember ` assignments simultaneously, however,
and has to forget some variable when this limit is reached. If Duplicator is later
asked about some forgotten variable, the new assignment need not be consistent
with the previous forgotten one. Spoiler wins the game by constructing a partial
assignment that falsifies some clause in F , and the game is a Duplicator win
if there is a strategy to keep playing forever without Spoiler ever reaching this
goal. It was proven in [3] that this game exactly captures resolution width in the
sense that Duplicator has a winning strategy if and only if ` ≤ WR(F `⊥).

Let us fix r = WR(F `⊥)− k + 1 and use Duplicator’s winning strategy for
` = WR(F `⊥) to build an r-extendible family for F [⊕] (the proof for general
non-authoritarian functions is very similar). Consider any assignment α reached
during the game. We define a corresponding structured assignment set (Qα,Hα)
by adding a block Qx = {x1, x2} to Qα for every x ∈ Dom(α), and let Hx

contain all assignments αx to {x1, x2} such that αx(x1 ⊕ x2) = α(x).
Given these structured assignment sets (Qα,Hα), the family F is constructed

inductively as follows. The base case is that (Q∅,H∅) = (∅, ∅) is in F . To extend
(Qα,Hα) to satisfy a clause in C[⊕], we simulate a Spoiler with memory α
who asks about all variables in C. Since Duplicator does not falsify C, when all
variables have been queried some literal in C must be satisfied by the assignment.
Fix one such variable assignment {x = b} and add

(
Qα∪{x=b},Hα∪{x=b}

)
as

defined above to F . All that remains now is to verify that this yields an extendible
family as described in Definition 5 and then apply Theorem 6.

Separation of Size and Degree from Space It follows from Theorem 7
that there are formulas which have small PC refutations in constant degree but
nevertheless require maximal space in PCR.

Theorem 8. For any field F of characteristic p there is a family of k-CNF
formulas Fn (where k depends on p) of size O(n) for which SpPCR(Fn `⊥) =
Ω(n) over any field but which have tree-like PC refutations πn : Fn `⊥ over F
of size S (πn) = O(n log n) and degree Deg(πn) = O(1).

Proof (sketch). Let us focus on p = 2. Consider a Tseitin formula Ts(G, χ) for
any constant-degree graph G over n vertices with connectivity expansion Ω(n)
and any odd-charge function χ.

From [11] we know that WR(F ` ⊥) = Ω(n). It is not hard to see that
XOR substitution yields another Tseitin formula Ts(G′, χ) for the multi-graph
G′ obtained from G by adding double copies of all edges. This formula requires
large PCR space (over any field) by Theorem 7. The upper bound follows by
observing that the CNF encodes a linear system of equations, which is easily
shown inconsistent in PC by summing up all equations in a tree-like fashion.
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It follows from Theorem 8 that tree-like space in PC/PCR is not upper-
bounded by tree-like size, in contrast to resolution. This is the only example we
are aware of where the relations between size, degree, and space in PC/PCR
differ from those between length, width, and space in resolution, so let us state
this as a formal corollary.

Corollary 9. It is not true in PC/PCR that tree-like space complexity is upper-
bounded by the logarithm of tree-like size complexity.

Space Complexity of Tseitin Formulas A closer analysis of the proof of
Theorem 8 reveals that it partitions the edge set of G′ into small edge-disjoint
cycles (namely, length-2 cycles corresponding to the two copies of each original
edge) and uses partial assignments that all maintain the same parities of the
vertices on a given cycle. It turns out that this approach can be made to work
in greater generality as stated next.

Theorem 10. Let G = (V,E) be a connected graph of bounded degree d with
connectivity expansion c such that E can be partitioned into cycles of length at
most b. Then it holds over any field that SpPCR(Ts(G, χ) `⊥) ≥ c/4b− d/8.

Proof (sketch). We build on the resolution space lower bound in [1, 17], where
the proof works by inductively constructing an assignment αt for each derived
configuration Ct (which corresponds to removing edges from G and updating
the vertex charges accordingly) such that (a) αt satisfies Ct, and (b) αt does
not create any odd-charge component in G of size less than n/2. The inductive
update can be performed as long as the space is not too large, which shows that
contradiction cannot be derived in small space (since Ct is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an
exponential number of such good assignments, and in general we do not know
how to do this. Nevertheless, some more thought reveals that the only important
aspect of our assignments are the resulting vertex parities. And if the edge set
is partitioned into cycles, we can always shift edge charges along the cycles so
that for all the exponentially many assignments, these parities are all the same
(meaning that we only have to maintain one good assignment after all).

Some graphs, such as rectangular grids, can be partitioned into cycles of
size O(1), yielding tight bounds on space. A bit more surprisingly, random
d-regular graphs for d ≥ 4 turn out to (sort of) admit partitions into cycles
of size O(

√
n), which yields the following theorem.

Theorem 11. Let G be a random d-regular graph on n vertices, where d ≥ 4.
Then over any field it holds almost surely that SpPCR(Ts(G, χ) `⊥) = Ω

(√
n
)
.

Proof (sketch). As long as we are interested in properties holding asymptotically
almost surely, we can replace random 4-regular graphs with unions of two random
Hamiltonian cycles [22]. We show that a graph distributed according to the
latter model almost surely decomposes into cycles of length O(

√
n), along with
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εn additional edges (which are easily taken care of separately). Since random
graphs are also excellent expanders, we can apply Theorem 10. The argument
easily extends to random d-regular graphs for any d ≥ 4.

We believe that the true space bound should actually be Θ(n), just as for
resolution, but such a result seems beyond the reach of our current techniques.
Also, note that to make Theorem 10 go through we need graph expansion plus
partitions into small cycles. It seems plausible that expansion alone should imply
PCR space lower bounds, as for resolution, but again we cannot prove this.

Limitations of the PCR Space Lower Bound Technique The framework
in [13] can also be used to rederive all PCR space lower bounds shown previously
in [1, 18], and in this sense [13] sums up what we know about PCR space lower
bounds. There are also intriguing similarities between [13] and [3] (as partly
hinted in the proof sketch for Theorem 7), which raises the question whether
extendible families could perhaps be a step towards characterizing degree and
showing that degree lower-bounds space in PC/PCR.

Even more intriguingly, however, there are CNF formulas for which it seems
reasonable to expect that PCR space lower bounds should hold, but where ex-
tendible families seem very hard to construct. Such formulas include ordering
principle formulas, functional pigeonhole principle (FPHP) formulas, and ran-
dom 3-CNF formulas. In fact, no PCR space lower bounds are known for any
3-CNF formula—it is consistent with current knowledge that all 3-CNF formulas
could have constant space complexity in PCR (!), though this seemingly absurd
possibility can be ruled out for PC [18].

We show that the problems in applying [13] to the functional version of
the pigeonhole principle are inherent, in that these techniques provably cannot
establish any nontrivial space lower bound.

Theorem 12. There is no r-extendible family for FPHPn+1
n for r > 1.

Since by [24] these formulas require PC refutation degree Ω(n), one way of
interpreting Theorem 12 is that the concept of r-extendible families is very far
from providing the hoped-for characterization of degree.

One step towards proving PCR space lower bounds could be to obtain a
weaker PC space lower bound—as noted above in the discussion of 3-CNF for-
mulas, this can sometimes be easier. For FPHPn+1

n , however, and for a slightly
more general class of formulas described in the full-length version of this paper,
it turns out that such PC space lower bounds would immediately imply also
PCR space lower bounds.

Theorem 13. SpPCR(FPHPn+1
n `⊥) = Θ(SpPC(FPHPn+1

n `⊥)).

4 Concluding Remarks

In this paper, following up on recent work in [6, 13, 18, 20], we report further
progress on understanding space complexity in polynomial calculus and how the
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space measure is related to size and degree. Specifically, we separate size and
degree from space, and provide some circumstantial evidence for the conjecture
that degree might be a lower bound on space in PC/PCR. We also prove space
lower bounds for a large class of Tseitin formulas, a well-studied formula family
for which nothing was previously known regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs
are not optimal, however. And for the functional pigeonhole principle, we show
that the technical tools developed in [13] cannot prove any non-constant PCR
space lower bounds. Although we have not been able to prove this, we believe
that similar impossibility results should hold also for ordering principle formulas
and for the canonical 3-CNF version of the pigeonhole principle. Since all of
these formulas require large degree in PCR and large space in resolution, it is
natural to suspect that they should be hard for PCR space as well. The fact that
arguments along the lines of [13] do not seem to be able to establish this suggests
that we are still far from a combinatorial characterization of degree analogous
to the characterization of resolution width in [3]. It thus remains a major open
problem to understand the relation between degree and space in PC/PCR, and
in particular whether degree (or even width) is a lower bound on space or not.

Also, our separations of size and degree on the one hand and space on the
other depend on the characteristic of the underlying field. It would be satisfying
to find formulas that provide such separations regardless of characteristic. Nat-
ural candidates are ordering principle formulas or onto function pigeon principle
formulas, or, for potentially even stronger separations, pebbling formulas.
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