
Cliques enumeration and tree-like resolution proofs

Massimo Lauria
massimo.lauria@uniroma1.it

Dipartimento di Scienze Statistiche - Sapienza Università di Roma, Italy

Abstract

We show the close connection between the enumeration of cliques in a k-clique free
graph G, the running time of DPLL-style algorithms for k-clique problem, and the
length of tree-like resolution refutations for formula Clique(G, k), which claims thatG
has a k-clique. The length of any such tree-like refutation is within a “fixed parameter
tractable” factor from the number of cliques in the graph. We then proceed to drastically
simplify the proofs of the lower bounds for the length of tree-like resolution refutations
of Clique(G, k) shown in [Beyersdorff et at. 2013, Lauria et al. 2017], which now re-
duce to a simple estimate of said quantity.

Key words: Proof Complexity, Clique, Resolution, Decision Tree

1. Introduction

The k-clique problem asks whether a graph has a set of k pairwise connected ver-
tices, i.e., a k-clique. Being one of the standard NP-complete problems it seems very
unlikely that it has an efficient algorithm, even in approximation [26, 24]. The brute
force approach to solve the problem on a graph of n vertices is to check all of the ≈ nk
sets of k vertices. Even more sophisticated algorithms (for example [38]) still run in
time nΩ(k) in the worst case. Is this the best we can hope for? If one believes the Ex-
ponential Time Hypothesis we cannot even get down to no(k) [25, 29]. The problem is
so difficult that we would like to prove its hardness without using unproved hypotheses.
Unfortunately we cannot do that unless we restrict the computational model. For exam-
ple we know that circuits that solve k-clique must have size nΩ(k) if they are restricted
to be either of constant depth [36] or without negation gates [35]. These results hold
even if we are satisfied with solving k-clique only asymptotically almost surely in the
Erdős-Renyi model, where the edges of the graph are picked (independently) at random
according to the appropriate density.

In this paper we focus on decision trees and DPLL-style algorithms [16, 15] for the
k-clique problem, namely algorithms that explore the space of solutions by guessing
possible members for the k-clique. In case a choice happens not to be fruitful, the algo-
rithm backtracks and tries other possibilities. The execution of a DPLL-style algorithm
is represented by a decision tree, therefore identify the two concepts.

Given a graphGwith no k-cliques, we can build a propositional formula Clique(G, k)
that falsely claims that G has a clique of size k. A correct algorithm that searches for a

Preprint submitted to Information Processing Letters March 2, 2018

mailto:massimo.lauria@uniroma1.it

k-clique inGmust fail, and its trace be an efficiently verifiable proof that Clique(G, k)
is unsatisfiable. When this algorithm is simple enough, as in the case of decision trees,
the proof can be written down in a simple language as well. If such language does
not allow for short proofs of unsatisfiability of Clique(G, k), the running time of the
algorithm must be long too. Decisions trees produce, on failure, tree-like resolution
proofs of unsatisfiability of formula Clique(G, k), for which we can prove strong lower
bounds. By studying how the proof is written down, we can ignore how the algorithm
finds it. A lot of those details can be abstracted away up to the point that we can see the
proof as the result of a non-deterministic, i.e., “very lucky”, proof search. Concretely,
it means that a lower bound for the length of tree-like resolution proofs applies to all
decision trees, regardless of how smart their decision strategy is.

The field of proof complexity [14, 6, 37] studies the length of proofs of propositional
unsatisfiability. The languages in which such proofs are written down are called proof
systems. The more general the proof system, more general is the class of algorithms
that the system captures. Resolution is definitely the most famous and it is at the core
of state-of-the-art SAT algorithms [4, 30, 31]. The first proof length lower bound for
resolution was proven in [23], followed by more general lower bound techniques [27,
8]. In practical SAT solving memory is a resource as precious as time, hence [19, 1]
developed a notion of proof space that is supposed to model memory usage. Another
important proof complexity parameter of resolution proofs is the “width”, i.e., the size of
each proof line. Estimating the required width of a resolution proof is a proxy to estimate
the required length [8] or the required space [3, 21]. The correspondence between width
and space is not very tight [33], which leads to study resolution space directly, using
various pebbling games to model memory allocation. While it is hard to know how
much memory is needed to win these games in general [22, 13], it is possible to use and
combine well understood cases of these games in order to prove resolution space lower
bounds and resolution length vs space trade-offs [32].

We now go back to the problem of determining the resolution proof complexity of
Clique(G, k). For k ≈ n, super polynomial lower bounds have been proved using the
size-width relation [5, 8], which is by now a standard technique in proof complexity. For
k � n the problem is still open. Neither the size-width relation nor interpolation [27],
which is the other main tool used in literature to prove resolution lower bounds, give
anything for k � n. New techniques may be necessary to solve this problem.

In this paper we focus on the tree-like resolution, which is a restricted form of res-
olution that captures algorithms based on decision trees. Tree-like resolution is weaker
than general resolution [12], but we understand better its proof length and space [9, 20].
There are three types of graphs for which the clique formula is known to require tree-like
resolution refutations of length nΩ(k). In [10] the lower bound is proved for the com-
plete (k − 1)-partite graph, as well as for Erdős-Renyi random graph with appropriate
edge density. A lower bound of nΩ(log(n)) holds for Ramsey graphs, i.e., graphs of n
vertices that have neither a 2 log(n)-clique nor a 2 log(n) independent set [28]. In this
paper we do not improve on these results, but we drastically simplify them by showing
a connection between the length of tree-like resolution refutations of Clique(G, k) and
the number of cliques in G.

The paper is organized as follows. In Section 2 we give the necessary definitions
and notations. In Section 3 we show the close correspondence between the number

2

of cliques in a graph and the length of tree-like resolution refutations for the clique
formulas on that graph. In Section 4 we show classes of k-clique free graphs with many
cliques, hence they need large refutations for the corresponding clique formulas.

2. Preliminaries

In this paper we consider simple undirected loop-less graphsG = (V,E). We write
Γ(v) to denote the set of vertices in V that are neighbors of a vertex v ∈ V . For an
arbitrary set of vertices U ⊆ V we denote as Γ(U) the set of vertices

⋂
u∈U Γ(u), i.e.,

the common neighbors of U in G. A clique of G is a set of vertices so that there is an
edge between any two of them. We denote as C(G) the set of cliques of G. We denote
as [m] the set of integers from 1 to m.

A CNF formula over a set of variables is a conjunction of distinct clauses, each
of them being the disjunction of distinct literals. A literal is either an occurrence of
a variable or its negation. D is a subclause of a clause C when D is a disjunction of
literals contained in C. We indicate that D is a subclause of C with notation C ⊆ D.

The k-clique formula Clique(G, k) is a CNF formula over variables xi,v for every
v ∈ V and i ∈ [k], where the boolean variable xi,v indicates whether the i-th vertex of
the clique is v. The formula is the conjunction of clauses∨

v∈V
xi,v ∀i ∈ [k] , (1a)

¬xi,u ∨ ¬xj,v ∀i, j ∈ [k], i 6= j,∀u, v ∈ V, {u, v} 6∈ E , (1b)
¬xi,u ∨ ¬xi,v ∀i ∈ [k],∀u, v ∈ V, u 6= v . (1c)

Clauses (1a) are called clique axioms, clauses (1b) are called edge axioms, and clauses
(1c) are called functionality axioms. Clearly Clique(G, k) is satisfiable if and only if
G contains a clique of k vertices, and this holds even without the functionality axioms.

Tree-like resolution and Decision trees. The proofs of unsatisfiability of Clique(G, k)
formula that we consider in the paper are sequences of logical inference steps obtained
using the resolution rule, an inference rule that derives a clause from two clauses, called
premises, as follows

A ∨ x B ∨ ¬x
A ∨B . (2)

To apply rule (2) the two premises must contain, respectively, the positive and negative
literal of some variable x, and thus we say that we resolve the two clauses over variables
x. The derived clause is their resolvant, and it is true whenever both premises are true.

A tree-like resolution proof of a clause C from some CNF formula F is a rooted
binary tree, directed from the leaves to the root, where each node in the tree is labeled
by a clause over the variables of F . The clauses labeling the nodes in the proof must
have the following properties:

• no clause contains both a literal and its negation;

• the clause labeling an internal node is the resolvant of the clauses labeling its two
immediate predecessors;

3

• the clause at the root is a subclause of C;

• any clause labeling a leaf is a subclause of some clause of F .

A tree-like resolution refutation is a proof of the empty clauses. The length of a tree-like
resolution proof is the number of its leaves.1

A decision tree that computes a function over some variables Y = {y1, . . . , yn}
with values in some set R is a rooted binary tree, directed from the root to the leaves.
Every internal node is labeled by a query, i.e., some variable in Y . The two directed
edges going out from an internal node are labeled by 0 and by 1 and correspond to
the two possible answers to the query. Leaves are labeled by values in R. Given an
assignment ρ : {yi}ni=1 → {0, 1}, we define path(ρ) as follows: start at the root and
whenever at an internal node ν labeled by a variable yi, add to the path the outgoing
edge (ν, ν′) labeled by ρ(yi), and move to ν′. The process eventually ends up at a leaf,
where it stops. The value of the function for the assignment ρ is the label of the leaf
reached by path(ρ). The size of a decision tree is the number of its leaves.

It is useful to associate partial assignments for the variables y1, . . . , yn to the paths
in the decision tree. A directed edge corresponds to a query yi and an answer b, hence
we associate it to the partial assignment {yi → b}. The partial assignment associated
to a path is the union of the assignments associated to the edges in it. Since no variable
occurs twice in any path, the assignment is well defined. For each node ν of the tree we
denote as ρν the partial assignment corresponding to the path from the root to ν.

In this paper we are interested in decision trees that solve the search problem for an
unsatisfiable CNF formula. The search problem, given a formula F over variables Y
and a total assignment ρ on them, asks to output a clause of F falsified by ρ. A decision
tree that solves the search problem is a decision tree over the variables of F , where each
leaf ` is labeled by a clause of F that is falsified by the partial assignment ρ`.

Decision trees and tree-like resolution refutations are tightly connected.
Fact ([7]). Any tree-like resolution refutations of length s for F can be efficiently trans-
formed into a decision tree of size s for the search problem over F . The opposite trans-
formation exists and is efficient as well.

In this paper we use a version of Markov’s inequality that claims that for any positive
random variable X with expectation EX , it holds that Pr[X ≥ δ] ≤ EX/δ. A direct
corollary is that an integer positive random variables with expected value o(1) is zero
with probability 1− o(1).

3. Cliques and tree-like refutations

In this section we show that for a k-clique free graph G the length of a tree-like
refutation of Clique(G, k) is roughly the number of cliques in G, when k � |V (G)|.
We first show the lower bound, which holds for any k.
Lemma 1. Let G be a k-clique free graph. The length of any tree-like resolution refu-
tation of Clique(G, k) is at least |C(G)|.

1This definition of tree-like resolution differs a bit from others in literature. Our definition does not need
a weakening rule and it is still complete for clauses with no opposite literals.

4

Proof. As we already discussed in the preliminaries, the length of the shortest tree-like
resolution refutation for Clique(G, k) is the same as the size of the smallest decision
tree for the search problem on Clique(G, k). We fix T to be such decision tree, and
for any fixed clique K ∈ C(G) we define a walk through T starting at the root and
reaching some leaf `K . To prove the lemma we show that for distinct cliques in C(G)
the corresponding walks reach distinct leaves, and therefore T must have at least |C(G)|
leaves. When the walk is at some node ν labeled by query xi,v the answer (i.e., the
direction to take) is determined according to these rules:

(i) answer 0 if ρν contains some {xj,w → 1}where eitherw = v or j = i; otherwise
(ii) answer 0 if v 6∈ K; otherwise

(iii) answer 1.

There is always a well defined answer for any query at any internal node of T , there-
fore the walk reaches one of the leaves, which we call `K , labeled by some clause of
Clique(G, k) which is falsified by the answers along the walk.

The rules ensure that neither edge nor functionality axioms get falsified, therefore
the assignment ρ`K must falsify a clique axiom, i.e., must contains {xi,v → 0}v∈V (G)

for some i ∈ [k]. This implies that for any walk and any v ∈ V (G), there is some query
xi,v along the walk which has been answered according to either rule (ii) or rule (iii).
Now consider the two walks that correspond to two distinct cliqueK1 andK2 in C(G).
The walks proceed identically along the same branch of T until they meet for the first
time a node with query xj,w where w belongs to either K1 \K2 or K2 \K1 and either
rule (ii) or rule (iii) applies. In that case the walks diverge, reaching two distinct leaves
`K1 and `K2 .

It would be nice to prove the converse of Lemma 1, namely to build a tree-like
resolution refutation of length at most poly(|V (G)|) · |C(G)|. This is not possible:
consider a graph with n vertices which is made by the union of an isolated vertex and a
complete graph of n−1 vertices. The Clique(G,n) formula for this graph is essentially
a pigeonhole principle formula and therefore is hard for resolution [23]. There are two
possible workarounds.

• The approach of [5] is to add monotonicity axioms to the formula to enforce that
the k indexes point to vertices in an increasing fashion. Vertices of the graph are
enumerated as v1, v2, . . . vn, and monotonicity axioms are

¬xj1,vi1 ∨ ¬xj2,vi2 ∀ 1 ≤ i2 < i1 ≤ n, ∀ 1 ≤ j1 < j2 ≤ k . (3)

• We treat k-clique as a parameterized problem [17], for parameter k � |V (G)|.

In the latter case we can show a tree-like resolution refutation of Clique(G, k) of
length at most f(k) · n · |C(G)| for any k-clique free graph G of n vertices.
Theorem 2. LetG be a k-clique free graph over n vertices. There is a tree-like refuta-
tion of Clique(G, k) of length f(k) · n · |C(G)|, for some function f .

Proof. We argue the existence of such refutation by building the corresponding decision
tree. Consider the order v1, v2, . . . , vn of the vertices of G and fix µ = ∅. We use µ to

5

keep track of the partial mapping between [k] and the vertices of the clique identified by
the answers to the queries. The tree queries the variables x1,vj for j going from 1 to n
in order, and stops when one query is answered 1. If none is, then the clique axiom for
i = 1 is falsified. Otherwise we add {1→ vj1} to µ, where x1,vj1

is the query that has
been answered 1. The tree repeats this process for i > 1 up to k, querying the variables
xi,vj for j from 1 to n in order, until one of these variables in answered 1. If none is,
then the i-th clique axiom is falsified. If instead some xi,vji is answered 1 then either
vji 6∈ Γ(rng(µ)) and then we are at a leaf because an edge axiom has been falsified, or
we add {i→ vji} to µ and continue with index i+1. At every node in the tree there is a
corresponding value of µ which identifies a clique of G. In particular we can associate
a specific value of µ to every leaf.

To bound the size of the tree observe that if the last mapping added to µ is {i→ vji},
then the tree queries all variables xi+1,vj . The branch reaches a leaf as soon as the
answers are all 0 or when one answer is 1 and violates an edge axiom. In all other
cases µ gets extended. Hence the branching reaches at most n + 1 leaves with each
specific value of µ. How many values of µ occur in total? Recall that µ is a mapping
from some indices in [k] to the vertices of some clique in G, therefore they are at most
f(k) · |C(G)|.

4. Graphs with many cliques

In this section we use Lemma 1 to obtain much easier proofs of the lower bounds
shown in [10, 28]. The first example is the complete (k−1)-partite graph of n vertices,
where we assume that k − 1 divides n. The graph is made by (k − 1) blocks of n

k−1
vertices each. There are no edges within a block and there is an edge between any two
vertices in different blocks. The graph has obviously nΩ(k) cliques, so the next theorem
follows immediately from Lemma 1.
Theorem 3 ([10]). LetG be the complete (k− 1)-partite over n vertices. Any tree-like
resolution refutation for Clique(G, k) has length nΩ(k).

A more interesting example is the random graph G(n, p) where p = n−(1+ε) 2
k−1 for

any ε > 0. For constant k in G ∼ G(n, p) the expected number of k-cliques is(
n

k

)(
n−(1+ε) 2

k−1

)(k2)
< nkn−(1+ε)k =

1

nεk
, (4)

and by Markov’s inequality there is none with high probability. Nevertheless any tree-
like resolution refutation of Clique(G, k) has length nΩ(k), again with high probability.
Theorem 4 ([10]). For any constant ε > 0, let G ∼ G(n, p) where p = n−(1+ε) 2

k−1 .
Graph G has no k-clique with high probability, and yet any tree-like resolution refuta-
tion of Clique(G, k) has length nΩ(k).

For p = 1/2 the interesting value of k is 2 log n + 2. For G ∼ G(n, 1/2) the
expected number of k-cliques with k = 2 log n+ 2 is at most(

n

k

)(
1

2

)(k2)
<

1

nO(1)
(5)

therefore by Markov’s inequalityG has no (2 log n+2)-clique with probability 1−o(1).

6

Theorem 5 ([10]). Let G ∼ G(n, 1/2). With probability 1 − o(1) graph G has no
(2 log n+2)-clique, and yet any tree-like resolution refutation of Clique(G, 2 log n+2)
has length nΩ(logn).

Both Theorems 4 and 5 can be easily proved using Lemma 1. To lower bound
the number of cliques we use the following extension lemma. Various versions of this
extension lemma exist in literature, e.g., in [10, 28]. We formulate one that applies to
our two settings of parameters.
Lemma 6. Let G ∼ G(n, p) with p ≤ 1

2 . With probability 1 − o(1) graph G has
nΩ(− logn

log p) distinct cliques.

Proof. We want to find many different cliques inG. First we show that with high prob-
ability an arbitrary set of Ω

(
− logn

log p

)
vertices has a polynomial number of common

neighbors. We fix a “canonical” clique size k′ = − logn
2 log p , which is at most logn

2 , and
we estimate |Γ(R)| for an arbitrary set R ⊆ V (G) with |R| < k′. For a fixed set of
vertices R of size less than k′ we consider the random variables Xv for v ∈ V (G) \R,
where Xv is 1 if v ∈ Γ(R) and 0 otherwise. Randomness of Xv is with respect of the
sampling ofG. These are n− |R| = n(1− o(1)) independent Bernoulli variables with
expectation p|R| > pk

′
= n−1/2. The expectation |Γ(R)| is at least

√
n (1− o(1)).

The probability that |Γ(R)| <
√
n/2 is, by Chernoff Bound [18, Theorem 1.1], at most

exp

(
−(1− o(1))

√
n

8

)
. (6)

Since there are at most nO(logn) possible sets R of size less than k′, by union bound
we get that all such R have, simultaneously, at least

√
n/2 common neighbors with

probability 1− o(1) with respect to the sampling of G.
Now we can easily show that there must be many “ordered” cliques: pick a sequence

of vertices v1, v2, v3, . . ., with each vi ∈ Γ({v1, . . . , vi−1}), until the sequence cannot
be extended anymore. For each vi in the sequence there are at least

√
n/2 choices, as

long as i ≤ k′, therefore we produce nΩ(k′) distinct ordered cliques.
Different ordered cliques could potentially correspond to the same clique, therefore

we must discount repetitions. We will show that with probability 1− o(1) with respect
to the sampling of G the latter has no clique larger than 4k′, so no clique corresponds
to more than 4k′! ordered cliques, and there must be at least nΩ(k′) cliques in the end.

To bound the size of the maximum clique in the graph we use the usual argument:
the expected number of cliques of size 4k′ in G is(

n

4k′

)
p(

4k′
2) ≈ 1

nΩ(k)
(7)

hence by Markov’s inequality the probability that there is one is o(1).

Lemma 1 and 6 immediately imply Theorems 4 and 5 by setting p = n−(1+ε) 2
k−1

and p = 1
2 , respectively.

A generalization of Theorem 5, discussed in [28], is the problem of witnessing that
a graph is c-Ramsey, i.e., that it has neither a c log n-clique nor independent set of size

7

c log n. The results in [28] actually show that even witnessing the absence of c log n-
cliques in a c-Ramsey graph is hard.
Theorem 7 ([28]). Let G be a c-Ramsey graphs on n vertices. Any tree-like resolution
refutation of Clique(G, c log n) has length nΩ(logn).

This theorem is a generalization of Theorem 5 because a random graph has neither
an independent set nor a clique of size 2 log n, with high probability. Therefore it is
c-Ramsey for any c ≥ 2. To prove the theorem we will need some facts about the edge
density of Ramsey graphs. For any two non empty disjoint sets of vertices A and B in
a graph G, the edge density d(A,B) is the ratio between the number of edges with one
end inA and the other inB, and |A| · |B|. It turns out that in most of a c-Ramsey graph
the edge density must be balanced.
Lemma 8 ([34]). There exist constants β > 0, δ > 0 such that if G is a c-Ramsey
graph, then there is a set S ⊆ V (G) with |S| ≥ n

3
4 such that, for all A,B ⊆ S, if

|A|, |B| ≥ |S|1−β then δ ≤ d(A,B) ≤ 1− δ.
Corollary 9. There exist constants β > 0, δ′ > 0 such that if G is a c-Ramsey graph,
then there is a set S ⊆ V (G) with |S| ≥ n

3
4 such that, for all A ⊆ S of size at least

2|S|1−β , at least δ′|A| vertices v in A have |Γ(v) ∩A| ≥ δ′|A|.

Proof. Fix S, β and δ as in Lemma 8. Consider a set A ⊆ S of size 2|S|1−β , and split
arbitrarilyA in two disjoint partsA0 andA1 with with |A0| = |A1| = |A|/2, and set U
to be the set of vertices inA0 with at least δ|A|/4 neighbors inA1. The total number of
edges between A0 and A1 is at most |U ||A1|+ δ|A0 \ U ||A|/4, and at least δ|A0||A1|
by Lemma 8. Therefore |U | ≥ δ|A|/4 and we can fix δ′ = δ/4.

Proof of Theorem 7. By the Lemma 1 we just need to show that there are nΩ(logn)

cliques in a c-Ramsey graph. We pick a sequence of vertices v1, v2, v3, . . ., with each
vi ∈ Γ({v1, . . . , vi−1}). We will show that there are at least nΘ(1) choices for each new
vertex vi and that the sequence can be extended for at least Ω(log n) steps.

Using Corollary 9 we can pick an initial set of vertices V1 of size n3/4, and constants
β > 0 and δ′ > 0 as stated in the corollary itself. We fix t = b log(n3β/4)

log 1/δ′ c, so that
n3/4 · δ′t ≥ n3(1−β)/4. Observe that t = Ω(log n).

For 1 ≤ i ≤ t we pick some vi ∈ Vi with |Γ(vi) ∩ Vi| ≥ δ′|Vi|, and we fix
Vi+1 to be Γ(vi) ∩ Vi. This is possible because we start with |V1| = n3/4 and at each
step i ≤ t we can apply Corollary 9 to ensure that |Vi+1| ≥ n3/4 · (δ′)i+1, given that
|Vi| ≥ n3/4 · (δ′)i ≥ n3(1−β)/4.

The choice of each vi is made among δ′|Vi| = nΘ(1) vertices therefore we produce
nΩ(t) = nΩ(logn) ordered cliques of length< c log n. At most (c log n)! ordered cliques
correspond to a clique in the graph, hence the number of cliques in G is nΩ(logn). An
application of Lemma 1 concludes the proof.

Conclusion

The performance of a DPLL algorithm for k-clique that runs on a k-clique free
graph G is equivalent to the proof complexity of a tree-like resolution refutation of the
corresponding Clique(G, k) formula. In this paper we have shown that the latter is

8

closely related to the number of cliques in G itself. As a consequence, we get new and
simpler proofs of some lower bounds in [10, 28].

The main problem left open in this work, raised for the first time in [11], is to prove
these lower bounds for resolution. Since resolution has refutations of Clique(G, k) of
length 2kpoly(n) for any (k−1)-colorable graph, we already know that Theorem 3 and
in particular Lemma 1 do not generalize [10]. On the other hand it is likely that Theo-
rems 4, 5, and 7 do, even though we do not know how to prove that. Partial progress was
made in the recent paper [2], which generalizes Theorems 4 and 5 to regular resolution,
a subsystem of resolution much more powerful than the tree-like one.

During part of this work the author was funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement ERC-2014-CoG 648276 AUTAR). This work was partially done dur-
ing the Special Semester on Computational and Proof Complexity organized at the
Chebyshev Laboratory of St.Petersburg, in the Spring of 2016. Special thanks go to
Nicola Galesi and Olaf Beyersdorff for many conversations and joint works about the
k-clique problem.

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM J. Comput., 31(4):1184–
1211, 2002.

[2] A. Atserias, I. Bonacina, S. F. de Rezende, M. Lauria, J. Nordström, and A. A.
Razborov. Clique is hard on average for regular resolution. In STOC 2018, 50th
ACM Symposium on Th. of Computing, 2018.

[3] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolu-
tion width. J. Comput. Syst. Sci., 74(3):323–334, 2008.

[4] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[5] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The resolution com-
plexity of independent sets and vertex covers in random graphs. Comput. Com-
plex., 16(3):245–297, 2007.

[6] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present,
and future. In Current Trends in Theoretical Computer Science, pages 42–70.
World Scientific Publishing, 2001.

[7] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separa-
tion of tree-like and general resolution. Combinatorica, 24(4):585–603, 2004.

[8] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made
simple. J. ACM, 48(2):149–169, 2001.

9

[9] O. Beyersdorff, N. Galesi, and M. Lauria. A characterization of tree-like resolution
size. Information Processing Letters, 113(18):666–671, 2013.

[10] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity
of dpll search procedures. ACM Transactions on Computational Logic (TOCL),
14(3):20, 2013.

[11] Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander A. Razborov.
Parameterized bounded-depth frege is not optimal. ACM Trans. Comput. Theory,
4(3):7:1–7:16, September 2012.

[12] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for res-
olution. Computational Complexity, 10(4):261–276, 2001.

[13] S. M. Chan, M Lauria, J. Nordström, and M. Vinyals. Hardness of approxima-
tion in pspace and separation results for pebble games. In Proceedings of the
2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS),
FOCS ’15, pages 466–485, Washington, DC, USA, 2015. IEEE Computer Society.

[14] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[15] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5:394–397, July 1962.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7:201–215, July 1960.

[17] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity.
Springer-Verlag, 2013.

[18] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[19] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information
and Computation, 171(1):84–97, 2001. Preliminary versions of these results ap-
peared in STACS ’99 and CSL ’99.

[20] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike
resolution space. Information Processing Letters, 87(6):295–300, 2003.

[21] Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc
Vinyals. From small space to small width in resolution. In 31st International
Symposium on Theoretical Aspects of Computer Science, STACS, pages 300–311,
2014.

[22] John R Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling prob-
lem is complete in polynomial space. SIAM Journal on Computing, 9(3):513–524,
1980.

10

[23] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–
308, 1985.

[24] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999. Preliminary version in FOCS ’96.

[25] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, The IBM Research Symposia Series, pages 85–103.
Springer, 1972.

[27] Jan Krajı́ček. Interpolation theorems, lower bounds for proof systems, and in-
dependence results for bounded arithmetic. The Journal of Symbolic Logic,
62(2):457–486, 1997.

[28] M. Lauria, P. Pudlák, V. Rödl, and N. Thapen. The complexity of proving that a
graph is ramsey. Combinatorica, 37(2):253–268, Apr 2017.

[29] Daniel Lokshtanov, Dániel Marx, Saket Saurabh, et al. Lower bounds based on
the exponential time hypothesis. Bulletin of EATCS, 3(105), 2013.

[30] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
May 1999. Preliminary version in ICCAD ’96.

[31] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[32] J. Nordström. Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science, 9:15:1–15:63, September 2013.

[33] Jakob Nordström. Narrow proofs may be spacious: separating space and width in
resolution. In STOC, pages 507–516, 2006.

[34] H.J. Prömel and V. Rödl. Non-ramsey graphs are c log n-universal. Journal of
Combinatorial Theory, Series A, 88(2):379–384, 1999.

[35] B. Rossman. The monotone complexity of k-clique on random graphs. SIAM
Journal on Computing, 43(1):256–279, 2014. Preliminary version in FOCS ’10.

[36] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceed-
ings of the 40th annual ACM symposium on Theory of computing, pages 721–730.
ACM, 2008.

[37] Nathan Segerlind. The complexity of propositional proofs. Bulletin of symbolic
Logic, 13(4):482–537, 2007.

[38] V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted
subgraphs. In Proceedings of the 41st annual ACM symposium on Theory of com-
puting, pages 455–464. ACM, 2009.

11

	1 Introduction
	2 Preliminaries
	3 Cliques and tree-like refutations
	4 Graphs with many cliques

