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We introduce polynomial calculus, a proof system that uses polynomial equa-
tions as proof lines. In order to discuss this proof system we introduce few basic
concepts of commutative algebra. We also give a self contained introduction of
the theory of ideals and on the computation of Gröbner basis

In the second and third lecture of the course we discussed the resolution
proof system. A proof in resolution is a sequence of clauses, each inferred
as a logical consequence of the previous one. In this lecture we discuss the
proof system Polynomial Calculus (Pc), which is very similar in spirit, but
that uses a more expressive language than clauses: polynomial equations.1

1 Matthew Clegg, Jeff Edmonds, and Rus-
sell Impagliazzo. Using the Gröebner basis
algorithm to find proofs of unsatisfiability.
In Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Comput-
ing, pages 174–183, 1996

To discuss this proof system we should refresh some preliminaries about
commutative algebra. A good reference for this topic are the first two chapters
of the book Ideals, Varieties, and Algorithms, by David Cox John Little Donal
O’Shea.2 Unfortunately wewill not have time to cover such interesting topics,

2 David Cox, John Little, and Donal O’Shea.
Ideals, Varieties, and Algorithms : An Intro-
duction to Computational Algebraic Geom-
etry and Commutative Algebra, 3rd edition.
Springer, 2007

therefore I will keep at minimum the reference to these concepts so to make
the lecture as self contained and possible, and so not to go overtime.

Let F a field3 wewill consider polynomials in the set F[x1, x2, . . . , xn],i.e. 3 A field is an object from algebra. I It is es-
sentially a set where the 0, 1 and the four op-
eration +, −, ×, ÷ behave as expected. We
will mostly concern ourselveswith fields like
Q, R and finite field like F2 or Fq with q a
prime number.

polynomials in n variables.
Each line in a proof is expressed as a polynomial equation as

x1x3 − 4x1x2x3 = 0 . (1)

Polynomial Calculus proof system

We are going to encode a CNF φ =
∧m

i=1 Ci a sequence of polynomial equa-
tions

p1(~x) = 0, p2(~x) = 0, . . . , pm(~x) = 0

over the field F[x1, x2, . . . , xn]. So that the the satisfying assignments of
φ correspond exactly to the common roots of p1, . . . , pm inside the set of
{0, 1}n.

Encoding of truth and falsehood In a polynomial calculus proof we interpret
{0, 1} variable assignments as propositional variables

xi = 0 when xi is true;

xi = 1 when xi is false.

Notice that this is different from what it is usually done, but the reason for
this interpretation is pretty clear. We interpret a polynomial as true when
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the assignment of its variable is a root (a zero) of the polynomial. Therefore
encoding the true assignment as the assignment to zero allows to say that the
variables xi is true when the polynomial xi is true (i.e. when the equation
xi = 0 is true).

Encoding of clauses We encode a CNF as a set of polynomials, with the
intended meaning that the satisfying assignment of a clause are in one-to-one
correspondence with the roots of the corresponding polynomial that have all
variables in {0, 1}. We define the encoding by the means of the following
example

x ∨ ȳ ∨ z̄ ∨ u x(1− y)(1− z)u (2)

where essentially we are using the fact that zero represents truth in order to
use multiplication as a disjunction.

Exercise 1 (Efficiency of the encoding). Show that there is a clause of k
literals for which the polynomial encoding has one monomial, and another
clause of k literals for which the polynomial encoding has 2k monomials.

A polynomial calculus derivation over the fieldF from polynomials p1, . . . , pm

is a sequence of steps using the following rules.4 4 The choice of the field is important and two
polynomial calculus over two different fields
are to be considered distinct proof systems.Boolean axiom: x2

i − xi
for some i ∈ [n].

Initial axiom: pj for some j ∈ [m];

Linear combination:
p q
αp + βq

for some α, β ∈ F;

Multiplication: p
xi p

for some variable xi with i ∈ [n].

Notice the boolean axioms: they are only valid for {0, 1} assignments.

Definition 2 (Complexity measures of polynomial calculus). The size of a
polynomial calculus proof is the number of monomials (with repetition) that
occur in a proof, intented as the sum of the number of monomials in each
polynomial among all polynomials in the proof.5 The degree of a polynomial 5 In the proof all polynomials are expressed

as linear combinations of distinct monomi-
als. The number of monomial in a polyno-
mial p = ∑m αmm is the number of non zero
coefficients αm.

calculus proof is a the maximum degree among all polynomials in the proof.6

6 The degree of a multivariate monomial
xd1

1 xd2
2 · · · x

dn
n is ∑i di . The degree of amul-

tivariate polynomial is the maximum degree
among its monomials.

While we are mostly concerned about size, the degree is a very impor-
tant measure of complexity, in a way similar to what resolution width is with
respect to resolution length.

Definition 3 (Derivation notation). Consider P = {p1, . . . , pm} and a poly-
nomial q.

• We say that q is “logically implied” by P when q(~x) = 0 for every x ∈
{0, 1}n which is a common root of p1, . . . , pm.

• We denote as P ` q the fact that q has a Pc derivation from P.

2 Massimo Lauria — lauria.massimo@gmail.com

mailto:lauria.massimo@gmail.com


Introduction to proof complexity Lecture 4

• We denote as P `d q the fact that q has a Pc derivation from P of degree
at most d.

We extend this notations to the form φ ` q, and to the form φ `d q, where φ

denotes the set of polynomials that encodes it.

In the next exercise we show that the notation P ` q can also be used to
indicate logical implication, at least for the case of boolean reasoning.7 7 Indeed this is not the case in other polyno-

mial frameworks.
Exercise 4. Consider P = {p1, . . . , pm} and a polynomial q, all over n
variables and of degree ≤ d. Prove that P logically implies q if and only if
P ` q, and furthermore in this case there is always a derivation of q from P
with size at most 2O(n) and degree max{n + 1, d}.

Exercise 5. Show that any polynomial calculus derivation can be trans-
formed, with a linear blow-up in size and constant blow up in degree, into
a derivation where at most one variable is raised to a power greater than 1
(assuming this holds for the initial and the target polynomials).

We also introduce the notation of equivalence modulo P. This notation
is justified since this is indeed a generalization of the concept of arithmetic
modulo some integer number, in a very precise sense. See Cox et al.8 for 8 David Cox, John Little, and Donal O’Shea.

Ideals, Varieties, and Algorithms : An Intro-
duction to Computational Algebraic Geom-
etry and Commutative Algebra, 3rd edition.
Springer, 2007

more information.

Definition 6 (Equivalence modulo P). Consider P = {p1, . . . , pm} and a
polynomial q.

• We say that q ≡ 0 (mod P), or q ≡P 0, if P ` q;

• We say that q ≡ q′ (mod P), or q ≡P q′, if P ` q− q′.

The constant polynomial 1 has no zeros, so it represents the contradiction.
This also fits with the encoding of falsehood as 1 and with the encoding of
the empty clause, which is indeed the polynomial 1 itself.

Definition 7. A polynomial calculus refutation of a set of polynomials P =

{p1, . . . , pm} is a derivation of the polynomial 1. A refutation of a CNF φ is
a refutation of the set of polynomials that encodes φ.

Multilinearization It is convenient, when dealing with polynomials over
variables in {0, 1}, to observe that monomials can have either value 0 or 1,
and therefore that xd1

1 xd2
2 · · · x

dn
n is essentially the same as ∏i:di>0 xi. This

means that we can ignore exponents larger than 1.

Definition 8. A polynomial p is calledmultilinear if in everymonomial, every
variable occurs with degree at most 1. Let m be the monomial xd1

1 xd2
2 · · · x

dn
n ,

then its multilinearization m̃ is the monomial ∏i:di>0 xi. The multilineariza-
tion of a polynomial p = ∑αm m is p̃ = ∑αm m̃.

Since we have the axioms x2
i − xi in our proof system, we can show ex-

plicitly the equivalence over {0, 1} of a polynomial and its multilinearization.

Exercise 9. Show that from p there is a polynomial calculus derivation
of p̂ which degree is at most the degree of p. Show that from p̃ there is a
polynomial calculus derivation of p which degree is at most the degree of p.
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Polynomial calculus with resolution

Exercise 10. Consider an unsatisfiable CNF formula φ. Show that if φ has a
resolution refutation of width W, then φ has a Pc refutation of degree W + 1
regardless the field F.

If you try to solve the previous exercise, you would notice that if the origi-
nal resolution proof uses clauses with many negative literals, then the simula-
tion in polynomial calculus has large size. Since wewant polynomial calculus
to be an improvement over resolution, we want to avoid the size explosion that
is required to simulate a clause with many negative literals.

The Polynomial calculus with Resolution (Pcr) is an extension of poly-
nomial calculus defined in9 which use additional variables to represent nega- 9 Michael Alekhnovich, Eli Ben-Sasson,

Alexander A. Razborov, and AviWigderson.
Space complexity in propositional calculus.
SIAM J. Comput., 31(4):1184–1211, 2002

tions efficiently. Proof lines now are polynomials over both variables x1, . . . , xn

and twin variables x̄1, . . . , x̄n. The proof system now can use additional log-
ical axioms to express the fact that the new variables are the negations of the
old ones.

Negation axiom: 1− xi − x̄i for some i ∈ [n].

The reason to define Pcr is that now we can use a more efficient encoding
of clauses.

x ∨ ȳ ∨ z̄ ∨ u xȳz̄u (3)

from which we get an efficient simulation in term of size.

Exercise 11. Consider an unsatisfiable CNF formula φ. Show that if φ has
a resolution refutation of width W and size S, then φ has a Pcr refutation of
degree W + 1 and size O(S) regardless of the field F.

Question (Question for the class). A Pc derivation is also a legal Pcr deriva-
tion. Nevertheless could it be that Pcr has proofs of smaller degree than Pc
for some formulas?

Definition 12. We extend the notations from Definition 3 and Definition 6
to Pcr . This extension is non ambiguous since if P and q do not have twin
variables, then the a derivation is possible in both proof systems, within the
same degree (of course we are assuming the same underlying field).

We see that Pcr simulates resolution. Now we argue that indeed there are
cases in which polynomial calculus can be stronger than resolution. In the
previous lecture 3 left as exercise to show that there are particular unsatisfi-
able systems of linear equation modulo 2 so that any resolution refutation of
their CNF encoding requires exponential size refutation.

Proposition 13. Let φ be CNF encoding of an unsatisfiable system of linear
equations module 2. Show that φ has a Pc refutation of size polynomial in
the size of φ, assuming the underlying field is F2.

In the next class we will see, if time permits, that in other fields such for-
mulas may require exponential size refutations (e.g., in Q, C, R and in Fq

with q 6= 2).
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Algorithm 1: The greedy division algorithm
Data: (p1, p2, . . . , pm) and q
Result: (h1, h2 . . . , hm) and a residue r such that

• q = r + ∑j hj pj;

• LT(pj) does not divide any monomial in r;

• the degrees of all hjgj and of r are less than the degree of q.

r := 0;
hj := 0 for all j ∈ [m];
while q 6= 0 do

pick the first j such that LT(pj) divides LT(q);
hj := hj +

LT(q)
LT(pj)

;

q := q− LT(q)
LT(pj)

· pj;

if there is no such j then
r := r + LT(q);
q := q− LT(q);

end
end
return (h1, h2 . . . , hm; r)

Proof search

We want to understand Pc derivations and in particular derivation within a
bounded degree. Since we only care about degree in this particular part of
the lecture, we will only discuss Pc proofs and ingore Pcr ones. Compare
the next theorem with the one for resolution refutation of width d.

Theorem 14 (Main theorem). If P `d q then some derivation of degree d
can be produced in time nO(d).

To operate on polynomial we need give a total order over the monomials,
so to identify the leading term.

Definition 15 (Graded Lexicographic order). We order variables as x1 ≺
x2 ≺ · · · ≺ xn. We order monomials so that m1 ≺ m2

• the degree of m1 is less than the degree of m2;

• if the degree of m1 and m2 is the same, m1 ≺ m2 if m1 precedes m2 in the
lexicographic order.

In a polynomial p = ∑m αmm the leading term (denoted as LT(p)) is αmm
for m is the largest monomial in p according to≺, such that αm 6= 0. If αmm
is the leading term, then m is called the leading monomial and is denoted as
LM(p).

The first (incomplete) attempt is to find proofs in Pc is to to use the stan-
dard polynomial division Algorithm 1.
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Algorithm 1 runs in polynomial time in the length of the initial polynomi-
als. Its running produces a proof of q− r in Pc (here we need to explicitly
include the boolean axioms among the input polynomials P).

Exercise 16. Show that if the boolean axioms x2
i − xi for i ∈ [n] are in-

cluded in the set of dividends, then the residue is always multilinear (i.e. no
variable occurs with degree larger than 1 in any monomial).

Unfortunately Algorithm 1 is not a complete test to check whether P ` q.
If q divided by P gives zero, that is a proof that P ` q, but there are examples
where q divided by P is not zero and still P ` q. Since testing whether P ` 1
is coNP-complete, it is expected that such an efficient algorithm would not
work. Consider

x2y + xy2 + y2 divided by (xy− 1, y2 − 1)

that produces (x + y)(xy− 1) + 1(y2 − 1) + x + y + 1︸ ︷︷ ︸
r

and now the same input where the divisors a ordered differently

x2y + xy2 + y2 divided by (y2 − 1, xy− 1)

that produces (x + 1)(y2 − 1) + x(xy− 1) + 2x + 1︸ ︷︷ ︸
r

The division algorithm fails to find that the smaller polynomial identity.

x− y = (2x + 1)− (x + y + 1)

is still equivalent to x2y + xy2 + y2 modulo (xy− 1, y2 − 1). One way to
generate further equivalences modulo P is to use S-polynomials.

Definition 17. The S-polynomial of q1 and q2, denoted as S(q1, q2) is the
polynomial

LCM(LM(q1), LM(q2))

LT(q1)
· q1 −

LCM(LM(q1), LM(q2))

LT(q2)
· q2 (4)

Example 18. See that S(xy − 1, y2 − 1) = y(xy − 1) + x(y2 − 1) =

x− y.

Exercise 19. Prove that:

• for every α 6= 0 and β 6= 0, S(q1, q2) = S(αq1, βq2).

• for every monomials m1, m2 and polynomials q1, q2 with LM(m1q1) =

LM(m2q2), then

S(m1q1, m2q2) = mS(q1, q2)

for some monomial m.

The S-polynomials are useful to produce identities that are not reach-
able from the division algorithm. Furthermore the S-polynomials introduces
some higher degree reasoning in our proof search arsenal. Indeed to prove
q1, q2 ` S(q1, q2) we may need to use intermediate polynomials

LCM(LM(q1), LM(q2))

LT(q1)
· q1 and

LCM(LM(q1), LM(q2))

LT(q2)
· q2 (5)

of degree larger than the degree of q1, q2 and S(q1, q2).
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Lemma 20 (Lemma 5 in Section 2.6 of Cox et al. (2007)). Let q = ∑`
i=1 ci fi

where LM( fi) = m for every i and where LM(q) ≺ m. Then we can write

q =
`−1

∑
i=1

c′iS( fi, fi+1) (6)

for some coefficients c′i.

Proof. Write fi = di(m + f ′i ) where LM( f ′i ) ≺ m. We get that

q =
`

∑
i=1

ci fi

=
`

∑
i=1

cidi(m + f ′i ) =

= c1d1( f ′1 − f ′2)+

+ (c1d1 + c2d2)( f ′2 − f ′3)+

+ (c1d1 + c2d2 + c3d3)( f ′3 − f ′4)+

. . . + (c1d1 + · · ·+ c`−1d`−1)( f ′`−1 − f ′`)+

+
( `

∑
i=1

cidi
)

f`. (7)

From the fact that LM(q) ≺ m we get that ∑`
i=1 cidi = 0 and since f ′i −

f ′i+1 = S( fi, fi+1), we are done.

We now put together the division algorithm and the S-polynomials, and
we define a strategy to search for Pc proofs. This essentially amount to the
computation of Gröbner basis.

Definition 21 (Gröbner basis). A Gröbner basis for P = {p1, p2, . . . , pm}
is a set of polynomials G = {g1, g2, . . . , g`} such that

• P ` q if and only if G ` q;

• for every gi, gj in G, S(gi, gj) divided by G is zero.

Definition 22 (Gröbner pseudo-basis of degree d). A Gröbner pseudo-basis
of degree d for P = {p1, p2, . . . , pm} is a set of polynomials Gd = {g1, g2, . . . , g`}
such that

• P `d q if and only if Gd ` q;

• for every gi, gj in Gd, either S(gi, gj) divided by Gd is zero or LCM(LM(gi), LM(gj))

has degree larger than d.

Before explaining how to compute such basis and pseudo-basis, we claim
the most important property of these objects.

Theorem 23. Let q be derivable with a degree d proof in polynomial calculus
from p1, . . . , pm. Let Gd output of Algorithm 2 from p1, . . . , pm. Then q
divided by Gd is equal to 0.

Proof sketch. We say about a polynomial q with respect to P

• is reducible, if q divided by P gives zero;
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• is semi-reducible, if q = ∑j hj pj where the LT(hj pj) � LT(q) for every
j.

• has a degree d representation if q = ∑j hj pj where the degree of hj pj is
at most d for every j.

To prove the result we show that

1. if a polynomial is added in S at any point in the computation, then is semi-
reducible w.r.t. the final set Gd;

2. when q has a degree d representation w.r.t. to Gd, then it is semi-reducible
w.r.t. Gd;

3. when q of a degree at most d is semi-reducible w.r.t. Gd, then it is reducible
with respect to Gd;

4. every polynomial in a degree d derivation in Pc is semi-reducible.

Corollary 24. A Gröbner pseudo-basis of degree n+ 1 is an actual Gröbner
basis.

Corollary 25. There is a Pc refutation of degree d from p1, . . . , pm if and
only if 1 ∈ Gd, where Gd is computed from by Algorithm 2 from p1, . . . , pm.

Algorithm 2: The Buchberger algorithm
Data: P = {p1, p2, . . . , pm}
Result: A pseudo Gröbner basis of degree d, Gd = (g1, g2 . . . , g`)
Fix Gd := ∅;
Fix S := {x2

i − xi|i = 1 . . . n} ∪ {p1, . . . , pm};
while S 6= ∅ do

pick some p in S (give precedence to the boolean axioms);
let p′ be the residue after dividing p by Gd;
if p′ 6= 0 then

Gd := Gd ∪ p′ (append in the end);
for g ∈ Gd with g 6= p′ do

Add S(g, p′) to S when the degree of LCM(LM(g), LM(p′))
is at most d

end
end

end
return (h1, h2 . . . , hm; r)

Exercise 26. Show that every g ∈ Gd has a Pc proof of degree d from P, and
that it is possible to extract such proof from the the running of Algorithm 2.

Exercise 27. Show that Algorithm 2 computes Gd it time nO(d) assuming
P = {p1, . . . , pm} has size nO(1), where n is the number of variables in P.
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