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We are going to show a lower bound on the refutation size for random 3-XOR.
The lower bound holds for polynomial calculus under every field where 1 + 1
is different from 0 and 1 (in particular it does not hold for F2).

We recall from last lecture that a polynomial calculus derivation over the
field F from polynomials p1, . . . , pm is a sequence of steps using the follow-
ing rules.

Boolean axiom: x2
i − xi

for some i ∈ [n].

Initial axiom: pj for some j ∈ [m];

Linear combination:
p q
αp + βq

for some α, β ∈ F;

Multiplication: p
xi p

for some variable xi with i ∈ [n].

Definition (Pc degree and size). The size of a polynomial calculus proof is
the number of monomials (with repetition) that occur in a proof, intented as
the sum of the number of monomials in each polynomial among all polynomi-
als in the proof.1 The degree of a polynomial calculus proof is a the maximum 1 In the proof all polynomials are expressed

as linear combinations of distinct monomi-
als. The number of monomial in a polyno-
mial p = ∑m αmm is the number of non zero
coefficients αm.

degree among all polynomials in the proof.2

2 The degree of a multivariate monomial
xd1

1 xd2
2 · · · x

dn
n is ∑i di . The degree of amul-

tivariate polynomial is the maximum degree
among its monomials.

Degree versus size

We want to use degree lower bounds to get size lower bounds, and we use
a theorem very similar to the one we showed already for resolution, due to
Impagliazzo, Pudlák, Sgall (1999).3 They prove the theorem for Pc but the 3 Russell Impagliazzo, Pavel Pudlák, and Jiří

Sgall. Lower bounds for the polynomial cal-
culus and the gröbner basis algorithm. Com-
putational Complexity, 8(2):127–144, 1999

proof extends to Pcr pretty much immediately. The proof is more or less the
same as in resolution.

Theorem 1 (Impagliazzo, Pudlák, Sgall, 2001). Consider a k-CNF formula
φ of n variables that has a Pc (Pcr) refutation of size S. Then φ has also a
Pc (Pcr) refutation of degree at most

k + O
(√

n ln S
)

.

Corollary 2. Consider a k-CNF formula φ of n variables. Let S the size of
the smallest Pc (Pcr) refutation of φ, and let D be the smallest degree among
the refutations of φ. Then it holds that

S ≥ exp

(
Ω

(
(D− k)2

n

))
.
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Exercise 3. Look again at the proof of the size-width tradeoff for resolution
in lecture 3, and convince yourself that the proof can be adapted to Pc and
Pcr.

As for resolution, we know that the theorem cannot be improved because
there is a formula with a small refutation which requires Θ(

√
n) degree.4 4 Nicola Galesi and Massimo Lauria. Op-

timality of size-degree tradeoffs for polyno-
mial calculus. ACM Transaction on Compu-
tational Logic, 12:4:1–4:22, October 2010

Theorem 4 (Galesi and Lauria, 2010). There exists a 3-CNF over O(m2)

variables so that

• has O(m3) clauses;

• has a Pc refutation of length mO(1) and degree m + O(1);

• requires refutation degree Ω(m).

Linear system modulo 2

In this class we deal with linear systems modulo 2. Each linear equation

x1 + x2 + · · ·+ xk = b (mod 2) (1)

for b ∈ {0, 1} can be encoded encoding as

Clause encoding. 2k−1 clauses of width k;

Polynomial encoding. (char(F) = 2)

x1 + x2 + · · ·+ xk = b ; (2)

Polynomial encoding. (char(F) 6= 2)

∏
i

(
1− 2xi

)
= −1b . (3)

Example 5. The clause encoding of x1 + x2 + x3 = 1 (mod 2) under any
field is

(1− x1)(1− x2)(1− x3) = 0

x1x2(1− x3) = 0

x1(1− x2)x3 = 0

(1− x1)x2x3 = 0

and its polynomial encoding under a field of charachteristic 6= 2 is

(1− 2x1)(1− 2x2)(1− 2x3) = 0. (4)

Furthermore there is a O(1) size and degree transformation between the two
encoding. As shown by the following exercise.

Exercise 6. Show that from the standard polynomial encoding of the 2k−1

clauses we can derive the polynomial encoding in the appropriate field, and
vice versa, with a derivation of length 2O(k) and degree k + O(1).
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Because of the previous exercise it does not matter really if we use the
clause encoding or the polynomial encoding for our upper and lower bounds.
Now we see that under a field of characteristic 2 there is a very simple refu-
tation of any unsatisfiable 3-XOR.

Proposition 7. Let φ be CNF encoding of an unsatisfiable 3-XOR system over
n variables. Formula φ has a Pc refutation of size (|φ|2) and degree O(1),
assuming the underlying field is F2.

Proof. Formula φ has m constraints, each encoded as 4 clauses. For each
constraint we can derive the corresponding Equation (2) in length O(1) and
degree O(1). Once we do that we can refute the linear system by summing a
subset of the equations and obtaining 1 = 0.

Multiplicative encoding of linear equation mod 2.

If the field has characteristic different from 2 then we cannot deal with linear
equations mod 2 as efficiently. We will use the polynomial encoding as in
Equation (3). To ease notation we do a linear change of variables, that maps
yi ← (−1)xi .

yi 1− 2xi (5)

y1 · · · yk = (−1)b (1− 2x1) · · · (1− 2xk) = (−1)b (6)

y2
i = 1 x2

i = xi . (7)

Remark 8. The translation between yi variables and xi variable is invertible
and is linear. Therefore a refutation of degree d over one notation exists if
and only if exists in the other notation.

Definition 9. A multilinear monomial is a monomial where all variables are
raised to a power at most one.

Exercise 10. Show that a Pc refutation can be transformed into another refu-
tation at most a constant times bigger, with at most additional O(1) degree
where at most one variable has degree 2 in any monomial.

Exercise 11. Show that a function f : {0, 1}n −→ F has a unique repre-
sentation as a linear combination of multilinear monomials

∏
i∈I

xi for I ∈ [n]. (8)

and another unique representation as a linear combination ofmultilinearmono-
mials

∏
i∈I

yi for I ∈ [n]. (9)

(Hint: the functions from {0, 1}n to F form a vector space over F of dimension 2n.)

Why the multiplicative encoding? Linear equations in F2 can be simulated
multiplicatively in other fields using this mapping and, as we will see later,
this is more or less the form of the Pc refutation in other fields of other char-
acteristics: summing equations x1 + x2 + x3 + x4 = 1 with x2 + x3 +
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x5 + x6 = 1 under F2 gives x1 + x4 + x5 + x6 = 0. While multiplying
y1y2y3y4 = −1 and y2y5y5y6 = 1 gives y1y4y5x6 = 1.

Actually last product gives y1y2
2y2

3y4y5x6 = 1 but we can use axioms y2
i .

We can remove the squared variables as soon as they occur and that costs at
most additional degree 2 in the proof.

The lower bound result and strategy.

We consider random 3-XORs over n variables and m clauses. The formula is
obtained by sampling m times with repetition from the set of all 2(n

3) parity
constraints on 3 variables. Wewill use the following properties of the random
3-XOR.

Proposition 12. There are ∆ > 0 and α > 0 such that if we pick a random
3-XOR over n variables with m = ∆n parity constraints we have with high
probability that

• the formula linear system is unsatisfiable;

• every set S ⊆ [m] of at most αn equations has at least ε|S| variables
occurring in exactly one equation among S;

• every set of at most αn equations is satisfiable.5 5 This actually follows from the previous
item, can you see why?

Lemma 13 (Gaussian width lower bound). Consider 3-XOR that satisfies the
properties of Proposition 12. Then any degree 1 refutation in Pc under field
F2 has a line with Ω(n) variables.

Proof. Under F2 the 3-XOR is encoded as linear equations, and each line in
a degree 1 refutation is just the sum of a subset of the initial equations.

For any line L in the proof consider µ(L) to be the smallest initial con-
straints that where summed to derive that line. For initial constraints µ(L) =
1, and µ(”0 = 1”) ≥ αn. The latter is because for a sum to give 0 = 1
all variables must appear in an even number of constraints, but any set of at
most αn equations has variable occurring exactly once. Since µ can at most
double at each addition step, there is a line L for which αn

2 ≤ µ(L) ≤ αn.
There are at least εµ(L) = Ω(n) variables that occur uniquely in those initial
equations, therefore L has Ω(n) variables.

The following theorem has been proved in Ben-Sasson, Impagliazzo (1999)
using techniques from Grigoriev et al. (2001)6.

6 Eli Ben-Sasson and Russell Impagliazzo.
Random CNFs are hard for the polyno-
mial calculus. In 40th Annual Symposium
on Foundations of Computer Science, pages
415–421, 1999; and Samuel R. Buss, Dima
Grigoriev, Russell Impagliazzo, and Toniann
Pitassi. Linear gaps between degrees for the
polynomial calculus modulo distinct primes.
J. Comput. Syst. Sci., 62(2):267–289, 2001

Theorem 14. Let φ a random 3-XOR as above, encoded as a CNF formula.
With high probability any polynomial calculus refutation of φ under a field
of characteristic different from 2 requires size 2Ω(n).

proof preliminaries. With high probability the 3-XOR satisfied the proper-
ties in Proposition 12. Assuming these properties we are going to prove an
Ω(n) degree lower bound for the Pc refutation. Because of Exercise 6 we
can assume that the 3-XOR system is given in the polynomial encoding and
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because of Remark 8 we can assume that everything is encoded using the
yi variables. Therefore we actually want to show that refuting the system of
equations

yi1(j)yi2(j)yi3(j) = (−1)bj j ∈ [m] (10)

y2
i = 1 i ∈ [n] (11)

requires a degree Ω(n) refutation. To do that we show that a refutation of
degree d in this field can be used to produce a degree 1 proof under field
F2 where at least one line mentions 2d variables. The degree lower bound
follows then by Lemma 13, and the size lower bound follows directly from
Corollary 2.

A simple form for refutations

We will argue that any refutation under fields of characteristic different from
2 have a very simplified form, which is essentially a multiplicative encoding
of the degree 1 refutation under F2. Take the set Ed of the binomial equations

m1 = ±m2

where m1 and m2 are polynomials over yi variables, obtained as

• polynomial encoding under field of characteristic different from 2 of initial
parities of the 3-XOR formula;

• if m1 = ±m2 ∈ Ed and yim1 = ±yim2 has degree at most d, then
yim1 = ±yim2 is in Ed;

• if m1 = ±m2 ∈ Ed then m2 = ±m1 ∈ Ed;

• if m1 = αm2 ∈ Ed and m2 = βm3 ∈ Ed then m1 = αβm3.

Exercise 15. Consider derivations from 3-XOR in which all proof lines have
the form of multilinear binomial m1 ±m2 = 0. Show that m1 = ±m2 ∈ Ed

if and only if m1 ±m2 = 0 has such derivation in degree d.

Proposition 16. If 1 = −1 ∈ Ed then there is a degree 1 refutation under
F2 where each linear equation mention at most 2d variables.

proof sketch. Each m1 = ±m2 can be represented as m1m2 = ±1 by at
most doubling the degree. Notice that

yi1 yi2 · · · yik = (−1)b

is essentially
(−1)xi1

+xi2+···+xik = (−1)b.

Therefore we can represent each m1 = ±m2 ∈ Ed as a degree 1 linear euqa-
tion under F2 with at most 2d variables. 1 = −1 corresponds to (−1)0 =

(−1)1 therefore it is represented by equation 0 = 1 under F2. It is easy to see
that these linear equation mod 2 can be derived in the same way the elements
of Ed are derived, modulo translating from the multiplicative setting to the
additive one.
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Corollary 17. Consider 3-XOR that satisfies the properties of Proposition 12.
If 1 = −1 ∈ Ed then d = Ω(n).

The main theorem follows by showing that any refutation of 3-XOR in
under fields of characteristic 2 is essentially representable in Ed without loss
of degree.

Lemma 18. Let P = {m1 = ±1, m2 = ±1, . . . , m` = ±1} the polynomial
encoding of a 3-XOR system. Consider any q such that P `d q. Then

q = ∑ ci(mi − αim′i) (12)

with alphai = ±1, where for every i, mi = αm′i ∈ Ed, and where every mi

and m′i occur in q with non zero coefficient.

Proof. This is obvious for initial parity constrains. And it is also easy to
see that if q has such representation then xq has a representation without
cancellations. Let q be a linear combination of some q1, q2 that have the
desired representation. We obtain a representation

q =
`

∑
i=1

ci(mi − αim′i) (13)

but there may be monomial cancellations. Consider a monomial m which is
on the right side but not on the left side: without loss of generality the case
where LM(q) ≺ m and that

q =
`

∑
i=1

ci(m− αimi) (14)

with αi = ±1 and mi ≺ m for every i and m = αimi ∈ Ed. Then we can
rewrite q as

`

∑
i=1

ci(m− αimi) =

`

∑
i=1

cim−
`

∑
i=1

ciαimi = −
`

∑
i=1

ciαimi = −c1α1m1 −
`

∑
i=2

ciαimi =

`

∑
i=1

ciα1m1 − c1α1m1 −
`

∑
i=2

ciαimi =

`

∑
i=2

ciα1(m1 −
αi
α1

mi) . (15)

Here we used that m was cancelled, hence it must be that ∑`
i=1 ci = 0.

This concludes the proof of Theorem 14.
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