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We introduce cutting planes, a proof system originally devised for integer pro-
gramming. We explain how to use the interpolation method to prove lower
bounds for cutting planes, and we prove a lower bound for the clique-coloring
formula.

Cutting planes proof system

We can express decisions problems like SAT by the means of integer pro-
grams. In this lecture we discuss a proof system that witness their unsat-
isfiability: cutting planes.1. In this proof system we go back to the natural 1 William Cook, Collette R. Coullard, and

György Turán. On the complexity of cutting-
plane proofs. Discrete AppliedMathematics,
18(1):25–38, 1987

encoding of true as 1 and false as 0.2 First we translate any clause into a

2 This is the inverse of the encoding in poly-
nomial calculus.

linear inequality with integer coefficients. The clause

x ∨ ȳ ∨ z̄ ∨ u (1)

for example translates into

x + (1− y) + (1− z) + u ≥ 1 (2)

or equivalently

x− y− z + u ≥ −1 (3)

which has a solution over {0, 1} values if and only if the clause is satisfied.
Therefore an integer program that encodes a CNF has the form of

Ax ≥ b

xi ∈ {0, 1} for every i;

where the matrix A has only integer values. There is no known efficient
algorithm that solves integer programs; a viable strategy is to relax the inte-
ger programs to something easier to manage. In this case we consider linear
programs.3 3 Jiří Matoušek and Bernd Gärtner. Un-

derstanding and using linear programming.
Springer, 2007

In cutting planes we transform in the most naive way the integral con-
straints into fractional linear constraints (i.e. xi ∈ {0, 1} into 0 ≤ xi ≤ 1)
and leave the other constraints alone. Once we relax the integer program we
have a lot of new fractional solutions that were not allowed before. Consider,
for example, the program that asks for an independent set of size 2 in the
complete graph of 4 vertices.
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x1 + x2 + x3 + x4 ≥ 2

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x1 + x4 ≤ 1

x2 + x3 ≤ 1

x2 + x4 ≤ 1

x3 + x4 ≤ 1

x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}, x3 ∈ {0, 1}.

The program has no integer solution but if we relax the constraints and
allow 0 ≤ xi ≤ 1, then the linear program has a fractional solution by setting
all variables to 1

2 . Cutting planes rule must be such that we can get rid of of
suprious fractional solutions.4 4 We can formally think that proof lines are

inequalities in the standard form aT x ≥ γ,
but we will use other form as aT x ≤ γ,
aT x = γ or even γ′ ≤ aT x ≥ γ. Each
such form can be easily written as one or two
inequalities in standard form.

Boolean axiom xi ≤ 1 and xi ≥ 0 for some i ∈ [n];

Initial axiom ∑ aixi ≥ γ the encoding of some clauses of the CNF;

Combination ∑i aixi ≥ γ ∑i bixi ≥ δ

∑i(αai + βbi)xi ≥ αγ + βδ
for some non negative inte-

gers α, β;

Division and rounding ∑ aixi ≥ γ

∑ ai
c xi ≥

⌈ γ
c
⌉ for some positive integer c that di-

vides all ai.

The division and rounding strengthen the inequality, and indeed there may
be feasible fractional solutions of the linear program that are removed by the
new improved inequality. The rationale behind the rule is that since the coef-
ficients on the left side are integer and all the variables have values in {0, 1},
then the left side must have integer value as well and therefore we can round
up the right side without removing any integer solution. Such integer cuts
were introduced by Gomory5 to solve integer programs. The idea is first to 5 Ralph E. Gomory. Outline of an algorithm

for integer solutions to linear programs. Bul-
letin of the American Mathematical Society,
64(5):275–278, 1958

find a feasible solution, maybe with the simplex method. If the solution is not
integer, it can be cut with an application of division and rounding rule, and
the search may continue. (See Figure 1.)

Definition 1. The length of a cutting planes derivation is the number its lines.
The rank of a cutting planes refutation is as follows

• the rank of axioms is 0;

• the rank of an inequality obtained by combination is the maximum rank
among the premises;

• the rank of an inequality obtained by division and rounding is one more
than the rank of its premise.
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Figure 1: The effect of a Gomory integer
cut, i.e. a division and rounding step. The
red part does not contain any integer solu-
tion and is removed by the polytope.

The size of a cutting planes derivation is the sum, among all inequalities and
all coefficients in the derivation, of the length of they binary representation.6 6 We won’t discuss too much about the size

of coefficients in this lecture, but it is indeed
an important issue in cutting planes proofs.

A refutation in cutting planes is a derivation of 0 ≥ 1.

Exercise 2. Show that any resolution refutation of size s for a formula of n
variables can be translated in a cutting plane refutation of size O(ns).

Exercise 3. Consider the set of inequalities

xi + xj ≤ 1 for 1 ≤ i < j ≤ n. (4)

Show how to derive the inequality

n

∑
i=1

xi ≤ 1 . (5)

in length O(n2).

Exercise 4. Try to solve the previous exercise with a derivation of rank
O(log n). Any proof length is fine.

The relaxed linear program defines a bounded polytope P ⊆ [0, 1]n. All
inequalities derived by combination rule are valid for P too, but every time
we use the rounding rule we cut away part of the polytope. In the end we
produce a sequence

P ⊇ P1 ⊇ P2 . . .P` = ∅. (6)
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Interpolation method

We are going to show a lower bound for cutting planes proofs, due to Pudlák.7 7 Pavel Pudlák. Lower bounds for Resolu-
tion and Cutting Plane proofs and monotone
computations. Journal of Symbolic Logic,
62(3):981–998, 1997

This is essentially the only lower bounds know for general cutting planes
proofs. Lower bound for restricted version of cutting planes were proved al-
ready in8. Consider an unsatisfiable formula on three sets of variables x, y, z

8 Russell Impagliazzo, Toniann Pitassi, and
Alasdair Urquhart. Upper and lower bounds
for tree-like cutting planes proofs. In Logic
in Computer Science, 1994. LICS’94. Pro-
ceedings., Symposium on, pages 220–228.
IEEE, 1994; and Maria Luisa Bonet, Toni-
ann Pitassi, and Ran Raz. Lower bounds for
cutting planes proofs with small coefficients.
The Journal of Symbolic Logic, 62(3):pp.
708–728, 1997

of the form
A(x, y) ∧ B(x, z) . (7)

For every assignment ~v to the x variables it must be the case that either
A(~v, y) or B(~v, z) is unsatisfiable (or both).

Definition 5. Given a formula A(x, y)∧ B(x, z), a function I(x) with {0, 1}
values interpolates the formula if for for every assignment ~v,

I(~v) =

0 implies A(~v, y) is unsatisfiable;

1 implies B(~v, z) is unsatisfiable.
(8)

Essentially
A(x, y) −→ I(x) −→ ¬B(x, z) . (9)

The formula that interests us is the clique-coloring formula, which claims
that a graph of n has simultaneously a (k − 1)-coloring and a k-clique, for
the specific value of k = b 1

8 (n log n)2/3c.

Fn = Cliquen(x, y) ∧Colorn(x, z) (10)

where xij are (n
2) variables that encode the edges of a graph; yi encode the

k-clique; zi,c are [k− 1]× [n] variables that encode a (k − 1)-coloring for
the graph x.

The formula Cliquen is a conjunction of the following inequalities

∑
i∈[n]

yi = k (11)

xij ≥ yi + yj − 1 . (12)

The formula Colorn is a conjunction of the following inequalities

∑
c∈[k−1]

zi,c = 1 for every i ∈ [n]; (13)

xi1,i2 + zi1,c + zi2,c ≤ 2 for every c ∈ [k− 1], i1 < i2 ∈ [n]. (14)

Exercise 6. Show that the interpolant for this formula, given the (n
2) vari-

ables xij that encode a graph, outputs 0 if the graph is k − 1 colorable, and
outputs 1 if the graph contains a k-clique.

Next theorem, due to Pudlak (1997)9 show that such interpolant has no 9 Pavel Pudlák. Lower bounds for Resolu-
tion and Cutting Plane proofs and monotone
computations. Journal of Symbolic Logic,
62(3):981–998, 1997

monotone real circuit of small size.

Definition 7. A monotone real circuit is a circuit that takes an input in Rn

and it is a composition of binary and unary non decreasing functions. A
monotone real circuit computes a boolean function f if is has the same values
on {0, 1}n.
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Theorem 8 (Pudlak, 1997). Let f : {0, 1}(n
2) → {0, 1} be amonotone boolean

function which is 0 on all k− 1-colorable graphs and is 1 on all graphs with
a k-clique, with k = b(n/ log n)2/3/8c. Then every monotone real circuit
computing f has size 2Ω(n/ log n)1/3 .

Monotone interpolation of cutting planes

The interpolation method to prove proof system lower bounds is due to Kra-
jíček 10 and follows the intuition that from a proof it is sometime possible to 10 Jan Krajíček. Interpolation theorems,

lower bounds for proof systems, and in-
dependence results for bounded arithmetic.
The Journal of Symbolic Logic, 62(2):457–
486, 1997

efficiently extract some computation. If that computation is unfeasible, then
the proof must be long.

Lemma 9. Consider an unsatisfiable integer program

Ax + By ≥ Γ

Cx+ + Dz ≥ Γ′

xi ∈ {0, 1} yi ∈ {0, 1} zi ∈ {0, 1}

in which C has only non positive entries and that has a cutting planes refu-
tation of length `. Then there is a monotone real circuit of size O(`) that
computes the interpolant I(x) of the program.

Proof sketch. We split the refutation in two derivation, one from formula
Ax + By ≥ Γ and one from formula Cx + Dz ≥ Γ′. Each line in one
each of the two derivations corresponds to a line in the original one, obtained
with the same inference. For each line in the cutting planes proof11 11 For convenience we put the x variables on

the right side.

bTy + cTz ≥ γ− aTx (15)

we associate two lines

bTy ≥ γ1 − aT
1 x cTz ≥ γ2 − aT

2 x (16)

so that for every ~v it holds that

(γ1 − aT
1~v) + (γ2 − aT

2~v) ≥ γ− aT~v . (17)

At the end of the proof γ− aT~v = 1 therefore either (γ1 − aT
1~v) or (γ2 −

aT
2~v) is strictly positive. This means that the proof on that side is actually a
refutation.

To prove the lemma we need to show we can compute γ2 − aT
2 x with a

monotone real gates applied to the values computed at previous steps or to
the input. Notice that since matrix C is non positive, at the axiom download
step γ2 − aT

2 x is a non decreasing function. After showing that for every
to monotone gate used at every step we get a valid interpolant for the initial
formula. Indeed if γ2 = aT

2 x is positive (e.g. greater than 1/2) then the right
side or the decomposition is a valid refutation for B(x, z).

Corollary 10. Any cutting planes refutation of Fn has length 2Ω( 3
√

n/ log n).
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Proof. The interpolant of formula Fn can be computed as amonotone real cir-
cuit of size proportional to the size of its cutting planes refutation by Lemma 9,
because the x variable occur on the Cliquen formula all non positive, if writ-
ten in standard form. Observe that for every assignment of variables x, if x
has a k-clique, then Colorn is unsatisfiable and Cliquen is not, so the inter-
polant outputs 1, vice versa if the graph is (k− 1)-colorable, then Cliquen

is unsatisfiable and Colorn is not. Theorem 8 gives the result.

Exercise 11. Observe that the lower bound only depends on the coefficients
of variable xi in Fn. In particular look at Equations (11) and (13) and show
that if the same equations are encoded differently (maybewith additional vari-
ables), the result holds the same as long the new encoding does not use vari-
ables xi.

Exercise 12. Show that there exists a 3-CNF that has no cutting planes
refutation of polynomial size.
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