
Introduction to proof complexity Lecture 9

Lecture 9—Pebbling tautolgies and space-length trade-
offs
Massimo Lauria — lauria.massimo@gmail.com

Office 1107, Ookayama West 8th Building

Tuesday — November 24th, 2015 (This document was updated on June 21, 2017)

We use the pebbling tautologies to understand the relation between space and
length in resolution. We first introduce the black and black-white pebbling
games that model the space cost in deterministic and non deterministic compu-
tation; then we describe two variants of pebbling tautologies.

In the simplest variant, the cost of pebbling roughly corresponds to the lit-
eral space of the refutation of pebbling tautologies. In the more complex vari-
ant the cost of pebbling corresponds to the clause space of the refutation of
pebbling tautologies.

Therefore trade-off in pebbling games translate to trade-off in refutations
for pebbling tautologies.

In this lecture we consider the space of refutations in the blackboard
model. We will focus on a particular set of theorems and results based on
pebbling games. Jakob Norström is the major expert on this theory. He au-
thored two surveys: a work in progress one about pebbling games1, and one 1 Jakob Nordström. New wine into old wine-

skins: A survey of some pebbling classics
with supplemental results. Manuscript in
preparation., 2015

about the use of these games to obtain space lower bounds and trade-offs in
proof complexity2. In this lecture notes we won’t give full bibliographic ref-

2 Jakob Nordström. Pebble games, proof
complexity and time-space trade-offs.
Logical Methods in Computer Science,
9:15:1–15:63, September 2013

erence for everything that is told. For more specific pointer please look at
these surveys.

This class revolves around three concepts, each coming in a weaker and
stronger form.

1. Pebbling games on directed acyclic graphs. A model that capture how
much space is needed to perform a sequence of local computation steps.

• black pebbling game models deterministic computation;

• black-white pebbling gamemodels non-deterministic computation (i.e.
verifiable computation with guesses).

2. Resolution space. We extend the notion described last time and we con-
sider

• variable space is the number of variables in a memory configuration
(counted without repetitions);

• clause space is the number of clauses in a memory configuration;3 3 This is just a renaming of the notion of
space we discussed last for resolution.

and we extend these two notions to derivations and refutations and the
maximum of the measure, across all configuration in a derivation.

3. Pebbling formulas. These are easily refutable formulas that exhibit nice
relation between time and space.

Massimo Lauria — lauria.massimo@gmail.com 1

mailto:lauria.massimo@gmail.com
mailto:lauria.massimo@gmail.com


Lecture 9 Introduction to proof complexity

• Peb(G) is the simple version. The variable space of its refutation will
roughly correspond to the cost in the pebbling games for G;

• XPebF(G) is the XOR-ified version. The clause space of its refutation
will roughly correspond to the cost in the pebbling games for G.

The concept of variable space is quite unrelated with the particular proof
system. At least when it comes to weak proof systems.

Exercise 1. Assume that there is a refutation of φ in either Pc, Pcr or cutting
planes where all memory configurations have at most s variables. Show that
there is resolution refutation of φ in variable space s.

Pebbling games

Pebbling games are defined on directed acyclic graphswith constant degree.
We call

• indegree or incoming degree of a vertex the number of its incoming edges;

• outdegree or outgoing degree of a vertex the number of its outgoing edges;

• for every edge (u, v), u is a predecessor of v and v is a successor of u;

• sink a vertex with no successors;

• source a vertex with no predecessors.

We denote the set of predecessors and of successors of a vertex v as pred(v)
and succ(v), respectively. In this lecture we only focus only on directed
acyclic graphs with exactly one sink and indegree at most two. A peb-
bling game on such a graph G is a sequence of pebbling configurations. At
each configuration each vertex of the graph may have either one pebble or no
pebble at all, and each configuration follows from the previous one according
to some legal moves. The goal is to place a pebble on the sink of the graph,
having as little pebbles simultaneously on the graph as possible.

Black pebbling game A black pebbling4 for a graph graph G is a sequence 4 Michael S Paterson and Carl E Hewitt.
Comparative schematology. In Record of the
Project MAC conference on concurrent sys-
tems and parallel computation, pages 119–
127. ACM, 1970; and Ravi Sethi. Complete
register allocation problems. SIAM journal
on Computing, 4(3):226–248, 1975

of configurations that starts with a configuration in which there is no pebble
on any vertex. Each new configuration follows from the previous using a
move which is either

• (Pebble placement) if all predecessors of an unpebbled vertex v have peb-
bles, we can place a black pebble on v;

• (Pebble removal) remove a pebble from a pebbled vertex.

The goal of the game is to place a pebble to the sink vertex (i.e. to reach a
configuration where there is a black pebble on the sink). The cost of the black
pebbling is the maximum number of pebbles on G among all configurations
in the pebbling. The black pebbling number of G, denoted as Black(G), is
the minimum cost among all black pebbling of G.

The intuition of a black pebbling is that G represent a sequence of par-
tial results in a computation, where each step depends on its predecessors to
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be employed (e.g. the partial result in a formula evaluation or in a straight
line program). The number of black pebbles are the number of partial re-
sults needed to be kept in memory simultaneously in order to complete the
computation.

Black-White pebbling game. A black-white pebbling5 for a graph graph G 5 Stephen Cook and Ravi Sethi. Storage
requirements for deterministic/polynomial
time recognizable languages. In Proceed-
ings of the sixth annual ACM symposium on
Theory of computing, pages 33–39. ACM,
1974

is a sequence of configurations that starts with a configuration in which there
is no pebble on any vertex. Each new configuration follows from the previous
using a move which is either

• (Black Pebble placement) if all predecessors of an unpebbled vertex v have
pebbles, we can place a black pebble on v;

• (White Pebble placement) place a white pebble on any unpebbled vertex;

• (Black Pebble removal) remove a black pebble from any black pebbled
vertex.

• (White Pebble placement) if all predecessors of a white pebbled vertex v
have pebbles, we can remove the white pebble from v;

The goal of the game is to place a pebble to the sink vertex at some point
and then to remove all white pebbles from the graph. The cost of the black
pebbling is the maximum number of pebbles on G among all configurations
in the pebbling. The black-white pebbling number of G, denoted as BW(G),
is the minimum cost among all black-white pebbling of G.

The intuition of a black white pebbling is that of a non-determistic verifi-
able computation. A white pebble corresponds to a partial result in the com-
putation which is not computed but it is instead just guessed (and verified at
least once before being erased).

Exercise 2 (Black-white pebble reversal). Consider a black white pebbling
of G, and enumerate its pebbling configurations P1, P2, . . . P`. Show that
P′`, P′`−1, . . . , P′2, P′1 is a legal black white pebbling of G, where P′i is a copy
of configuration Pi where black and white pebbles are flipped.

Exercise 3. Consider a black pebbling of cost s. There is always a way to
transform it in such a way that the time and space do not increase, but after
every black pebble placement on sources the space of the configuration is at
most s− 1.

Remark 4. Of course every black pebbling is also a legal black white peb-
bling.

The main goal of the lecture is to argue that the following relations hold.

Theorem 5 (Informal). These relations hold

BW(G) / variable space for Peb(G) / Black(G)

BW(G) / clause space for Peb⊕2(G) / Black(G) .

Furthermore these relations hold also if we bound for all pebblings and refu-
tation with length/time bounded by the same function.

Therefore we can study lower bounds and trade-offs for pebbling formulas
(to be defined later) using lower bounds and trade-offs for pebbling games.
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Bounds and treade-offs for pebbling games

An interesting observation is that no graph requires linear pebbling number.6 6 John Hopcroft, Wolfgang Paul, and Leslie
Valiant. On time versus space. Journal of
the ACM (JACM), 24(2):332–337, 1977Proposition 6 (Hopcrotf et al. 1977). Give a DAG with n vertice,s one sink

and indegree at most 2, there is always a black pebbling of spaceO(n/ log n).

Exercise 7. Use the upper bounds for pebbling to show that any formula
that has a refutation of length L can be refutated in space O(L/ log L).

Exercise 8. Prove that any graph with a pebbling of constant space can be
pebbled in polynomial time and constant space simultaneously.

The next two results clarify the relative power of black and black-white
pebbling.7 7 Friedhelm Meyer Auf Der Heide. A com-

parison of two variations of a pebble game
on graphs. Theoretical Computer Science,
13(3):315–322, 1981; and Bala Kalyanasun-
daram and Georg Schnitger. On the power of
white pebbles. Combinatorica, 11(2):157–
171, 1991

Proposition 9 (Meyer auf der Heide, 1981). For any DAG G, it holds that
Black(G) ≤ BW(G))2/2.

Proposition 10 (Kalyanasundaram and Schnitger, 1991). There is a graph
family {Gs}∞

s=1 of size exp(s log s) where Black(Gn) ≥ s2 and BW(Gn ≤
3s− 1.

It is still open to find a polynomial size constriction.
Nevertheless since we resolution space complexity is sandwiched between

black-white and black-space, it makes sense to find graphs from which the
upper bounds hold for black pebbling and the lower bounds hold for black-
white pebbling.

The next lower bounds and trade-offs for the pebbling numbers of DAGs
comes from a series of classic papers (and a newer one) on pebbling8. All 8 John R Gilbert and Robert E Tarjan. Varia-

tions of a pebble game on graphs. Technical
report, DTIC Document, 1978; T. Lengauer
and R.E. Tarjan. Asymptotically tight
bounds on time-space trade-offs in a peb-
ble game. Journal of the ACM (JACM),
29(4):1087–1130, 1982; David A Carlson
and John E Savage. Graph pebbling with
many free pebbles can be difficult. In Pro-
ceedings of the twelfth annual ACM sympo-
sium on Theory of computing, pages 326–
332. ACM, 1980; David A Carlson and
John E Savage. Extreme time-space trade-
offs for graphs with small space require-
ments. Information Processing Letters,
14(5):223–227, 1982; and Jakob Nordström.
On the relative strength of pebbling and reso-
lution. ACMTransactions on Computational
Logic (TOCL), 13(2):16, 2012

results below refer (or can be easily adapted) to some family of DAGs Gn

with O(n) vertices one sink indegree at most two.

• (Gilbert, Tarjan, 1978) Optimal lower bound
There is a family of graphwith black-white pebbling lower boundΩ

(
n

log n

)
;

• (Lengauer, Tarjan, 1982) Trade-offs for the polynomial range
There is a family of graph with

– black pebbling of space 3;

– for every s ≤ n any black pebbling of space s takes time Θ(n2/s);

– for every s ≤
√

n any black-white pebbling of space s takes time
Θ((n/s)2).

• (Nordstrom, 2012; based on Carlson Savage, 1982) Trade-offs for small
non-constant space
For every slowly growing function g(n) = O(n1/7) and ε > 0, there is a
graph family so that

– has black pebblings of space O(g(n));
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– has a black pebbling of linear time and space O
(

3
√

n/g2(n)
)
;

– any black-white pebbling in space
(
n/g2(n)

)1/3−ε requires super-polynomial
time;

• (Lengauer, Tarjan, 1982) Robust trade-offs
There is a graph family so that

– has black pebbling of space O(log2 n);

– has a black pebbling of linear time and space O(n/ log n);

– there is a constant K such that any black-white pebbling in space <

Kn/ log n requires time nΩ(log log n);

• (Lengauer, Tarjan, 1982) Exponential trade-offs
Let K > 0 a large enough constant. There is a graph family and a constant
K′ � K such that

– has black pebbling of space K′n/ log n;

– has a black pebbling of linear time and linear space;

– any black-white pebbling in space< Kn/ log n requires time exp(nΩ(1)).

Definitions of the Pebbling formulas

We consider a formula, defined on single sink directed acyclic graphs G. The
formula says that (1) sources can be pebbled; (2) if all predecessors of a vertex
can be pebbled, then the vertex can be pebbled; (3) the sink cannot be pebbled.
The formula is essentially the negation of the claim that G has some pebbling
strategy in the pebbling game (i.e. the sink is reachable from all sources).

Definition 11 (Pebbling formula Peb(G)). Consider a DAG G with sink z,
the pebbling formula Peb(G) has a variable xv for every vertex v ∈ V(G).
The constraints are

¬xz z is the unique sink of V(G); (1)( ∧
u∈pred(v)

xu

)
−→ xv for every v ∈ V(G). (2)

Assuming G has in-degree 2 this is a 3-CNF in Horn form. The harder
variant of the pebbling formula is the one in which the reachability of a vertex
is represented by the XOR or two distinct variables.

Definition 12 (Pebbling formula Peb⊕2(G)). Consider a DAG G with sink
z, the pebbling formula Peb⊕2(G) has variables xv and yv for every vertex
v ∈ V(G).

¬xz ⊕ yz z is the unique sink of V(G); (3)( ∧
u∈pred(v)

xu ⊕ yu

)
→ xv ⊕ yv for every v ∈ V(G). (4)

While the constraints are not given in CNF form, each one can be ex-
pressed with at most 8 clauses on 6 variables.

Exercise 13. Show that for every G there is a refutation of Peb(G) of si-
multaneously
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• length O(n) and width O(1);

and one of simultaneously

• length O(n) and clause space O(1).

Exercise 14. Show that for every G there is a refutation of Peb⊕2(G) of
simultaneously length O(n) and width O(1).

Corollary 15 (FromProposition 6). Pebbling formulasPeb(G) andPeb⊕2(G)

can always be refuted in sublinear space.

Connection between pebbling games and pebbling formulas

Now we have all tools to develop a theory of pebbling formula. The main
tenets of this theory is the connection between pebbling cost of a graph G
and the space complexity of the corresponding pebbling formula over G. We
will leave the simple statements as exercises and we will discuss or prove
(time permitting) the more difficult part.

1. black pebblings upper bounds give resolutions refutations upper bounds;

2. black-white pebbling lower bounds give resolution refutation lower bounds;

3. the bounds apply for variable space of Peb(G) and for clause space of
Peb⊕2(G).

Black pebbling strategies give resolution refutations. If we have a strategy
for a space efficient black pebbling of a graph we can find a space efficient
refutation of pebbling formula.9 9 Eli Ben-Sasson, Russell Impagliazzo, and

Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combina-
torica, 24(4):585–603, 2004; and Eli Ben-
Sasson. Size-space tradeoffs for resolution.
SIAM Journal on Computing, 38(6):2511–
2525, 2009

Exercise 16. Show how to obtain, from a black pebbling strategy of graph
G in time t and space s, a refutation of Peb(G) of lengthO(t), variable space
O(s) and width O(1)

Exercise 17. Show how to obtain, from a black pebbling strategy of graph
G in time t and space s, a refutation of Peb⊕2(G) of length O(t) and clause
space O(s) and width O(1).

It is natural to ask whether we can simulate black-white pebbling in reso-
lution. Here the question is still open even though there are restricted versions
of black-white pebbling that (1) can be simulated in resolution (2) it is strictly
stronger than black pebbling on some graphs.10 This means that black peb- 10 Jakob Nordström. On the relative strength

of pebbling and resolution. ACM Trans-
actions on Computational Logic (TOCL),
13(2):16, 2012

bling strategies are not optimal in refuting pebbling formulas.

Resolution refutations give black-white pebblings. It seems that power of
resolution refutations on pebbling formulas in sandwiched between the power
of black-white pebbling and black pebbling. It is quite an interesting exercise
to see that this holds for variable space of Peb(G) formulas.
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Exercise 18. Consider, without loss of generality, a resolution refutation

M0, M1, . . . MT

for Peb(G), where

• there is no weakening;

• if we let say that the empty clause in MT is essential, and than each clause
used to derive an essential clause is essential, then the proof does only
contain essential clauses.

Show that we can extract from any such proof of length t and variable space
s a black-white pebbling strategy of length O(t) and space at most s.
(Hint: turn each memory configuration into a pebbling configuration, so that neg-
ative literals correpsond to white pebbles and positive literals corresponds to black
pebbles.)
(Hint: argue that the sink node is mentioned at some points and that this implies that
the conversion produces a pebbling.)

For clause space and XOR-ified pebbling formulas Peb⊕2(G) the proof is
much longer and involved, but in the end Ben-Sasson, Nordström11 showed 11 Eli Ben-Sasson and Jakob Nordström.

Short proofs may be spacious: An optimal
separation of space and length in resolu-
tion. In FOCS, pages 709–718, 2008; and
Eli Ben-Sasson and Jakob Nordström. Un-
derstanding space in proof complexity: Sep-
arations and trade-offs via substitutions. In
ICS, pages 401–416, 2011

that it is possible to turn a refutation of Peb⊕2(G) into a refutation of Peb(G)

so that clause space turns into variables space, and length is preserved.12

12 Their theorem is much more general but
we only need this simpler statement.

Theorem 19 (Ben-Sasson, Nordström (2011)). Any refutation of Peb⊕2(G)

in clause space s and length l can be transformed into a refutation of Peb(G)

of length O(l) and variable space O(s).

Corollary 20. Any proof of length t and clause space s for XPebF(G) can
be transformed into black-white pebbling strategy of length at most O(t) and
space at most O(s).

We won’t prove this theorem, but we will prove a simpler theorem which
will still give some weaker space trade-offs and lower bounds.

The simpler version of the clause space lower bound in term of black-white
pebbling only applies for short pebbling refutations. While the result is per
se limited, has a much easier proof.13 13 Eli Ben-Sasson. Size-space tradeoffs for

resolution. SIAM Journal on Computing,
38(6):2511–2525, 2009Theorem 21 (Ben Sasson, 2009). Consider a n unsatisfiable k-CNF formula

F that requires refutations of variable V. Let F[⊕2] the 2k-CNF obtained
by substituting each variable in F by the ⊕2 of two new variables. For any
resolution proof of F[⊕2] with clause space C and length L it holds that

C · log4/3 L ≥ V . (5)

Proof sketch. We start with F[⊕2] formula, and we assume it has a refutation
Π that uses clause space C and it has length L. Consider a random restriction
that picks at random one variable in each pair of the xorification and fix it
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with to a random bit. Observe that after the restriction, the formula is equal
to Peb(G) up to renaming of variables and up to polarity inversions.

Now we use the simple observation for for any refutation

clause space×width ≥ variable space (6)

and since the restriction does not increase neither width nor clause space, we
have that the width needed to refute the restricted formula is V

C .
The probability that one clause of width V

C (a parameter to be fixed later)
is killed by the restriction is (

3
4

) V
C

(7)

therefore

L ≥
(

4
3

) V
C

(8)

otherwise we would get a contradiction.

Theorem 21, together with the pebbling results in the previous sections,
implies clause space lower bounds for XOR-ified pebbling formulas, at least
when we consider only short refutation. To avoid this last condition and get
unconditional lower bounds and strong trade-offs we need to use Theorem 19
instead.
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