
On the Automatizability of Polynomial Calculus

Nicola Galesi*and Massimo Lauria †

Department of Computer Science
Sapienza - Università di Roma

May 10, 2022

Abstract

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not autom-
atizable, unless W [P]-hard problems are fixed parameter tractable by one-side error randomized
algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by
Alekhnovich and Razborov (SIAM J. Computing, 38(4), 2008).

1 Introduction
Automated theorem proving is one of the most important fields investigated both from a theoretical
and an applied point of view. It is widely conjectured (but still far to be proved) that for any proof
system we have families of tautologies requiring exponentially long proofs. For several concrete
examples (e.g. Resolution) we know such a result (see for Resolution, among many others, [13, 6,
5]). Hence investigating automated theorem proving from a theoretical point of view, we should
consider proof searching algorithms for a system S as “efficient” if on any formula F , they produce
a proof of F efficiently in the size of the best proof of A in S.

Automatizability is a property for proof systems introduced by Bonet et al. in [8], which cap-
tures the discussion above: a proof system S is automatizable if there exists an algorithm AS such
that on any tautology F , AS produces a proof of F in S in time polynomially bounded in the size
of the shortest proof of F in S. This definition is interesting since it makes the existence of ef-
ficient proof searching algorithms for a specific proof system independent from the existence of
hard formulas. Recently the notion of automatizabilty was improved and tightened for applications.
Atserias and Bonet in [4] introduced the notion of weak automatizability of a proof system. S is
weakly automatizable if there exists a proof system S′ that efficiently simulates S and that moreover
is automatizable.

In general it appears that the stronger the proof system is the lesser is the chance that the proof
system is automatizable. Krajı́cek and Pudlák [17], proved that Extended Frege systems are not
automatizable under widely accepted cryptographic conjectures. They did it by exploiting the con-
nection found by Bonet et al in [8] that automatizability implies Feasible Interpolation Property
[16, 8]. Later [8, 7], extended this result down to bounded-depth Frege but weakening the crypto-
graphic assumption considered.

This line of proving non automatizabilty was not suitable for systems, like Resolution, known to
have the Feasible Interpolation Property. In a major breakthrough Alekhnovich and Razborov [2],
proved that even Resolution is not automatizable unless some parameterized complexity assumption,
believed to be false, does hold.

Polynomial Calculus (shortened as PC) is an algebraic refutational proof system introduced in
[9] based on deriving polynomials. In the analysis of the complexity of proofs in PC (see [18] for

*Supported by La Sapienza research projects: (1) “Algoritmi efficienti su modelli avanzati di comunicazione e di calcolo”
and (2) “Limiti di compressione in combinatoria e complessità computazionale”.

†Partially founded by the grant #13393 of Templeton Foundation

1

a survey on algebraic systems) we deal with two parameters: the maximal degree of a polynomial
used in the proof, and the number of monomials in the proof (usually referred to as size).

It is known (see [9, 18]) that constant degree PC is automatizable. In [9] it is shown an algorithm
based on the Gröbner Basis which finds a PC proof of a set of polynomials P over n variables in
time nO(d), where d is the degree required for any PC proof of P .

The previous result does not give automatization of PC with respect to the size, i.e. the number
of monomials. This question is also interesting because: (1) there are examples of families of
polynomials (e.g. pigeon hole formulas) requiring an exponential number of monomials to be refuted
in PC (see [14]); (2) our recent result [12], that there are families of polynomials over n variables
requiring Ω(

√
n) degree but refutable with only a polynomial number of monomials. This means

that the algorithm in [9] cannot be used to recover efficiently proofs of every set of polynomials
efficiently provable in PC.

In this paper we study the question of the automatizabilty of PC. Since PC is one of the refuta-
tional system proved to have the Feasible Interpolation Property (see [20]), to prove non automatiz-
ability for PC we follow the approach of Alekhnovich and Razborov in [2]. Following their strategy
we prove that PC is not efficiently automatizable with respect to size unless W [P]-hard problems
are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial
Calculus their analogous result for Resolution [2].

The original part of the proof in our result is a new degree lower bound for a formula, invented
in [2], encoding the optimization problem known as minimum monotone circuit value problem. We
refer the reader to Section 2 for more details on the formula and the proof strategy.

We prove the degree lower bound following a technique initially invented by Razborov in [21]
and used also in the papers [1, 12]. As for the degree lower bound in [12], our degree lower bound
extends the technique of Razborov to new examples of formulas.

The paper is organized as follows. In Section 2 we give the main definitions and we discuss in
detail the proof strategy. Section 3 is devoted to the formulation and the polynomial encoding of
the principle used. We put efforts in trying to simplify the formulation of the principle. Section 4
contains the proof of the degree lower bound. Finally in the last Section we combine together the
degree lower bound with previous results of [2] to get the non automatizability of PC. We conclude
with a final Section on Open Problems.

2 Preliminaries

2.1 Algebraic proof systems and automatizabilty
We consider multivariate polynomials on variables x1, . . . xn over a field F. Let p1 . . . pl be such
polynomials: a common root of p1 . . . pl is an assignment ~α such that pi(~α) = 0 for 1 ≤ i ≤ l.

Consider an algebraic combinations ∆ :=
∑l
i=1 hipi for some polynomials h1 . . . hl. Every

common root of the initial polynomials is a root of ∆, thus if ∆ is the polynomial 1 then p1 . . . pl have
no common roots at all (i.e. they are collectively unsatisfiable). This way of proving unsatisfiability
can be adapted to propositional logic by

• adding x2
i − xi for any 1 ≤ i ≤ n to the initial set of polynomials. This forces common roots

to be 0-1 assignments.

• encoding boolean constraints as polynomials over 0-1 assignments.

The original set of boolean constraints is satisfiable if and only if its polynomial encoding has a
common root. We now define some algebraic proof systems for propositional logic, varying in the
way h1, . . . , hl are constructed and in the way ∆ is shown to be equal to 1. Notice that for efficiency
reasons h1, . . . , hl and ∆ may be not explicit exhibited in the actual refutation. An introduction to
algebraic proof systems is in the survey [18].

We denote the degree of a polynomial p as deg(p), and the number of monomials in p as S(p).
In the rest of the section we assume p1 . . . pl to be polynomials with no common roots among 0-1
assignments.

2

Nullstellensatz (HN): A proof in Nullstellensatz is a set of polynomials g1 . . . gl, h1 . . . hn such
that ∑

i

gipi +
∑
i

hi(x
2
i − xi) = 1

The degree of a HN proof is maxi{deg(gipi)}.
Polynomial Calculus (PC): A proof in Polynomial Calculus is a set of polynomials g1 . . . gm

such that gm = 1 and any gi is either an axiom x2
j − xj for some j ∈ [n], or a pj for j ∈ [l], or a

polynomial derived according one of the following inference rules:

ga gb
αga + βgb

ga
xj · ga

where 1 ≤ a, b < i, α, β ∈ F and j ∈ [n].
The degree of a PC proof is maxi{deg(gi)}, and the size of a PC proof is

∑
i S(gi).

Polynomial Calculus with Resolution (PCR): it is an extension of PC. Polynomials are allowed
to use additional variables x̄1 . . . x̄n. A proof is similar to a PC proof with the addition that a line
can be also be an axiom of the form 1− xj − x̄j .

As in PC, the degree of a PCR proof is maxi{deg(gi)}, and the size of a PCR proof is
∑
i S(gi).

Given a set of polynomials P = {p1 . . . pl} we define as degX(P) and SX(P) the minimum
degree and size achievable in a proof of P by the proof system X . It easy to see that the following
relations hold for any P .

degHN(P) ≤ degPC(P) = degPCR(P)

SHN(P) ≤ SPC(P) ≤ SPCR(P)

We say a that proof system X is automatizable (quasi-automatizable) if there is an algorithm
which given P outputs a valid X proof of P in time polynomial (resp. quasi-polynomial) with
respect to SX(P).

2.2 Notions from commutative algebra
Given a field F, we consider polynomials over F[x1, . . . , xn]. Given a set E = {f1, . . . , fn} of
polynomials, by Span(E) we denote the ideal generated by E, that is the set {

∑
i(fi · hi) | hi ∈

F[x1, . . . , xn]}. We say that a set of polynomials f1, . . . , fn semantically implies a polynomial g if
any assignment that satisfies fi = 0 for all i ∈ [n], also satisfies g = 0. We write f1, . . . , fn |= g or
E |= g.

We define a notion of residue of polynomials with respect to an ideal. We consider the grlex
order <P on monomials as given in [10]. In particular grlex is defined as follows: 1 <P x1 <P
x2 <P · · · <P xn. For any two products of variables m,m′ and a variable x hold the following
two properties: (a) if m <P m

′ then xm <P xm
′; (b) m <P xm. This order is lexicographically

extended to polynomials, and 0 is the smallest of them.
Notice that grlex is not a total order, thus there could be incomparables q, q′ ∈ Span(E). This

can happen if and only if the underlining sets of monomials are equal but have different coefficients.
In that case there exists a linear combination of q and q′ which is strictly smaller than both, and
which is in Span(E). Thus a minimum element in Span(E) always exists.

Given a polynomial q, we define RE(q) as the minimal, with respect to <P, polynomial p such
that q − p ∈ Span(E).

RE(q) = min{p ∈ F[x1, . . . , xn] : q − p ∈ Span(E)}

In the following sections we use some properties of the operator RE which can be easily derived
from the definition:

Lemma 1. Let E be a set of polynomials and let p and q be two polynomials. Then:

• RE(p) ≤P p;

• if p− q ∈ Span(E), then RE(p) = RE(q);

3

• RE is a linear operator;

• RE(pq) = RE(p ·RE(q)).

We shall consider polynomials on the field F defined on the domain {0, 1}n. More explicitly we
consider elements of the ring F[x1, . . . , xn]/{x2

i − xi}i∈[n]. Such polynomials are the base for all
algebraic proof systems we consider.

2.3 Proof Strategy
We show that if we could automatize one of the proof systems we just introduced, then we could
efficiently solve the following optimization problem:

Minimum Monotone Circuit Satisfying Assignment (MMCSA)

Instance: A monotone circuit over ∧,∨ in n variables.
Solution: An input a such that C(a) = 1
Objective function: w(a), the Hamming weight of a.

In [2] Alekhnovich and Razborov use the automatization of Resolution as a primitive to effi-
ciently solve MMCSA. The idea can be summarized in three independent steps.

1. Given a monotone circuit C, build an unsatisfiable CNF φ := F (C,w, r) and prove that the
size of the shortest proof of unsatisfiability for φ is strongly related to the size of minimum
satisfying assignment of the circuit. Here w is a guess for the minimum value of the objective
function. To amplify the degree complexity of φ and to apply the random restriction method
we use error correcting codes in the construction: the rates of such codes depends on r.

2. Assuming automatizability of the proof systems, use the automatization algorithm to find a
proof of unsatisfiability for φ of approximately small size. This gives an approximation of the
minimum assignment size.

3. Apply (randomized) gap amplification procedures to improve the approximation factor up to
an error smaller than one, thus obtaining an exact value.

The first step depends on the proof system. Using a slight modification of the formula built in
[2] we will prove the first step for algebraic proof systems. We will see that the other two steps are
essentially independent from the proof system. Formally we prove the following two theorems.

Theorem 1. If any of HN, PC and PCR is automatizable, then for a fixed ε > 0 there exists an
algorithm Φ working on monotone circuits C which runs in time exp

(
w(C)O(1)

)
|C|O(1) and ap-

proximates the value of w(C) to within a factor (1 + ε).

Theorem 2. If HN, PC or PCR are automatizable then MMCSA ∈ co− FPR.

MMCSA is believed to be an hard optimization problem, thus the previous theorems suggest
the impossibility of efficient automatization. To support the hardness of MMCSA we briefly in-
troduce the framework of parameterized complexity (for more details we suggest [11]): we con-
sider languages which are subsets of {0, 1}∗ × N. Take as an example the pairs (G, k) where G
is a graph with a vertex cover of size k. A problem is said to be fixed parameter tractable if the
membership of (I, k) in the language can be decided in time f(k) · |I|O(1) where f is an arbi-
trary monotone increasing function. This framework models the fact that if k is very small then
the computation is still feasible (given that f is reasonable). Notice that the previous parameter-
ized version of vertex cover is fixed parameter tractable. We can also consider fixed parameter
tractable reductions between languages. Consider the following hierarchy of complexity classes:
W [1] ⊆ W [2] ⊆ . . . ⊆ W [i] ⊆ . . . ⊆ W [SAT] ⊆ W [P]. W [P] consists in the languages fixed
parameter reducible to the problem of deciding if a monotone circuit has a satisfying assignment of
weight k. W [SAT] is similar but the circuit is restricted to be a formula. For all constant i, W [i]
is the subset of W [SAT] where formulas have depth at most i. By definition of W [P] it is easy
to see that MMCSA is W [P]-hard with respect to fixed parameter tractable reductions. It is widely
believed that this hierarchy is strict, so there are very few hopes that MMCSA could have a feasible
algorithm.

FPR is an hybrid class of RP and FPT introduced by [2], defined as follows:

4

Definition 1. The classFPR of parameterized problems, consists, of all languagesL ⊆ {0, 1}∗×N,
for which there exists a probabilistic algorithm Φ, a constant c and a recursive function f : N→ N
such that:

1. the running time of Φ(〈x, k〉) is at most f(k) · |x|c;
2. If 〈x, k〉 ∈ L, then Pr[Φ(〈x, k〉) = 1] ≥ 1/2;

3. If 〈x, k〉 6∈ L, then Pr[Φ(〈x, k〉) = 1] = 0;

To get Theorem 1, we prove the following reduction as in [2].

Lemma 2. Let C be a monotone circuit, and w an integer parameter. Assume that r = Θ(w):

1. Any PCR refutation of F (C,w, r) has size at least

2Ω(w·min{w(C),w})

2. If w(C) ≤ w then there is a HN proof of F (C,w, r) of size

|C| · 2O(w·w(C))

In turn the Lemma is proved using our main and new result in the paper, which is a degree lower
bound for F (C,w, r).

Theorem 3. Any PCR refutation of F (C,w, r) requires degree at least r ·min{w(C)− 1, w}.

3 The principle
Let C be a monotone circuit on n inputs of size polynomial in n. Let w(C) be the minimum
hamming weight of an assignment satisfying C and let w be a parameter whose intended meaning
is to guess a value for the size of w(C). Let r be a parameter used to amplify the degree hardness of
the principle, r is intended to be Θ(w).

A combinatorial object called Paley matrix is used for the construction. Such matrix has the
property that any projection on a small set of columns consists of all possible binary strings with an
almost fair frequency. For our purpose it is sufficient that any set of w columns has a full 1 row and
any set of w rows has a full 0 column. We will show a construction for a matrix A of size 2Θ(w).

Let q > 24w be an arbitrary prime, and consider a q × q matrix where cell (i, j) contains 1 iff
i − j is a quadratic residue modulo q, or 0 otherwise1. It is well known [15, 3] that any projection
on w rows or columns contains every string in {0, 1}w.

From C, w, r andA, we are going to define a set of equations F (C,w, r). The principle encodes
the property that there exists a set of n columns of the matrixA that contains no satisfying assignment
for the circuit C. This claim is unsatisfiable if w(C) < w. This is because whatever the selection of
n columns is, the w columns corresponding to the 1 coordinates of such assignment will contains a
full 1s string which satisfies the circuit C.

The n columns are selected by n partial functions called generators. These functions will be
defined in the following.

For technical reason, widely explained in [2], we add complexity to the principle: instead of
feeding one input to a single circuit, we feed it to several copies of the same circuit, and we select
one of those copies by a partial function called activator. In the principle we will express the fact
that only the gates of the active circuits have to perform the computation correctly.

The principle claims that there exists a choice for the ’generators and activators’ inputs such that:
(a) values for such inputs are defined and (b) no circuit outputs 1.

It is clear that even in this version of the principle w(C) < w implies that for any input any w
generators produce a full 1 row. This row is fed to a set of r copies of the circuit C. One of them
is active and has to propagate the computation through the gates. Thus that circuit copy outputs 1,
which is in contradiction with the claim no active circuit outputs 1.

1Note that in literature the original Paley Matrix is defined in a different fashion with 0 values on diagonal, 1 for quadratic
residues and -1 for non residues. But this is not an issue here

5

Circuit family Let q = 2Θ(w) the size of the matrix. We consider an array of q × r copies of C,
indexed as Cik.

Let s be a parameter we specify later and which should be intended to be Θ(w + log q) which
will be Θ(w + r).

Activators For all i ∈ [q] we consider a possibly partial function Ai : {0, 1}s 7→ [r] which
selects one of the circuit among Ci1 · · ·Cir. Only for gates in the selected circuit we ensure to
propagate correctly through the circuit. The other ones are relieved from the computation.

Generators For j ∈ [n] Gj : {0, 1}s → {0, 1}q generates a column vector of A. Thus
{G1 · · ·Gn} define a q × n matrix. For all i ∈ [q] the ith row of such matrix is fed to Ci1 · · ·Cir as
input.

Generator and Activators with r-surjectivity and parameter s. As in [2] (see there for an ex-
tensive discussion about this requirement) we need both activators and generators to be r-surjective
functions on domain {0, 1}s, for a suitable s. Here is a construction (see also [2], proof Lemma
3.1 (ii)), that allows us to define surjective functions. Consider a general binary surjective function
g : {0, 1}l 7→ S and a decoding function D : {0, 1}αl 7→ {0, 1}l of a code with distance ≥ 2l (con-
structions exist [22] such that α is a universal constant). Then g ·D : {0, 1}αl 7→ S is l-surjective
on S. To see this consider the restricted bits as “error” bits. Any message can be decoded from the
proper codeword with those l bits changed.

The output of a generator function Gj is completely specified by the choice of a column in the
Paley matrix (hence Θ(w) bit), the output of the activator Ai is specified by the choice of a number
in [r]. Thus Θ(w + r) input bits are enough to define both surjective generators and selectors. Then
by composition with a 2r distance code we obtain the desired r-surjective functions on {0, 1}s with
s = Θ(w + r).

Because of the properties of Paley matrix, generators and activators the following fact holds.

Fact 1. For any monotone circuit C, and any w > w(C), at least one of {Cik}ik outputs 1 whatever
the assignment for activators and generators is.

3.1 Propositional Encoding
We now describe the polynomials which encode the negation of the principle discussed so far. De-
scribing the elements of the principle we will be consistent with the following notation.
Notation reference

C the monotone circuit.

n input variables in the circuit C.

v index refers to a the gates of C. It goes from 1 to |C|. We assume first 1..n indexes correspond
to input gates. And |C| corresponds to the output gate.

w(C) is the minimum hamming weight of an assignment satisfying C.

q = 2Θ(w) a prime number, size of the Paley matrix.

r is a parameter.

i index used to denote a row in the Paley matrix, a selector function and one of the inputs fed to
the circuits. It goes from 1 to q.

j index used to denote one input variable of C and one of the generator functions. It goes from
1 to n.

k index used to denote one of the possible outcomes of the selector functions. It goes from 1 to
r.

Cik kth copy of C, fed with the ith row generated by generator functions.

Ai i
th activator function which selects among circuits Ci1, . . . , Cir.

Gj jth generator function which chooses the jth columns to feed as jth input of the circuits.

s length of the binary input of activators and generators, it is Θ(w + r).

6

xj(α), yi(β) For a vector α, β ∈ {0, 1}s we denote as xj(α) and yi(β) the characteristic polynomials of
α and β respectively on variables xj1, . . . , xjs and yi1, . . . , yis. For example xj(001 . . .) is
x̄j1x̄j2xj3 · · · .

Polynomials which encode the principle are expressed in the following set of variables.
Variables

For all i, j, k, and gate v as above:

• xj1 . . . xjs are the variables representing the input of generator Gj .

• yi1 . . . yis are the variables representing the input of activator Ai.

• zvik represents the value of gate v in circuit Cik.

We now give the encoding, dividing polynomial equations in several sets. For any index i ∈ [q]
we encode in an equation set Fi all equations relevant to row i. Indexes i, j, k, v and α, β apply
properly as described above. Fi are shown below:

xj(α)yi(β)z̄ji,k = 0 iff the ith bit of Gj(α) is 1 and Ai(β) = k (1)

yi(β) = 0 when β 6∈ dom(Ai) (2)

yi(β)zAi,kz
B
i,kz̄

v
i,k = 0 gate v ← A ∧B and Ai(β) = k (3)

yi(β)zAi,kz̄
v
i,k = 0, yi(β)zBi,kz̄

v
i,k = 0 gate v ← A ∨B, and Ai(β) = k (4)

yi(β)z
|C|
i,k = 0 Ai(β) = k (5)

(1) says that if the ith bit of the column generated by Gj is 1 and the active circuit for ith row is
k, then the jth input of Cik must be on. (2) forces the yi variables to encode a value in the domain
of the activator function. This is necessary because activators are partial functions. (3) and (4) force
the active circuit to compute the gates correctly. The equation (5) claims that the output of the active
circuit is zero.

Notice that this principle is slightly different from the one in [2]. They use additional variables
to indicate circuit activation. We choose not to use them because they would cause trouble in some
technical steps of the following proofs.

Fi specifies in a truth table fashion how gates of a circuit in a row i behave. When such circuit
is activated the input of generators causes some bits to be fed in it. The principle also claims such
circuit outputs 0. The principle consists in the conjunction of Fi for i ∈ [q].

Definition 2. We call F (C,w, r) the principle described above as
⋃
i Fi, where C is a monotone

circuit, q = 2Θ(w) is a prime, and r is the surjectivity parameter of generators and activators.

Fact 2. The equations of principle F (C,w, r) can be produced in |C|2O(w+r) time and space. If
w(C) ≤ w then F (C,w, r) is unsatisfiable.

Proof. Remember s = O(w+ r). For any α, β two strings of s bits, any i ∈ [q], any j ∈ [n] there is
at most one k such that xj(α)yi(β)z̄ji,k = 0 is in the principle. Then for any β and i there is at most
one k for which there are gate propagation equations. Otherwise there is one single clause yi(β) = 0
if β is not in the domain of Ai. In total we have n2O(s) + |C|2O(s) equations. Notice that if we have
dual variable for encoding negations then all equations can be encoded as monomials. Otherwise
equations will be encoded as polynomials exponentially long in the degree of the equation. Biggest
degree appearing is 2s thus the size of the formula F (C,w, r) is again n2O(s) + |C|2O(s). The
obvious output strategy satisfies the resource bound. Unsatisfiability comes as a restatement of Fact
1.

4 Degree Lower bounds for F (C,w, r)

In this section we prove that the formula F (C,w, r) requires a high degree to be refuted. We need a
tailored degree measure for this purpose.

7

Definition 3. For a monomial t consider the three sets

Xt := {(j, l) : xjl ∈ t}
Yt := {(i, l) : yil ∈ t}
Zt := {(i, k) : there is a v for which zvik ∈ t}

And we define the index-degree of t as

ideg(t) = |Xt|+ |Yt|+ |Zt|

The index-degree of a polynomial is the biggest index-degree among its monomials.

Theorem 4. Any PCR refutation of F (C,w, r) contains a polynomial of index-degree at least
r ·min{w(C)− 1, w}.

From now on we define m := min{w(C)− 1, w}. The index-degree lower bound relies on the
construction of an operator K over multivariate polynomials such that

1. K is a linear operator.

2. K(p) = 0 for any p in F (C,w, r).

3. If ideg(t) < rm then K(xt) = K(xK(t)) holds for any variable x.

4. K(1) 6= 0

Proof. (of Theorem 4) Assume a proof of index-degree less than rm exists: each line of such proof
is either an equation in F (C,w, r), or a sum of previous lines, or the product of a previous line with
a variable where index-degree stays below rm. Then properties (1), (2), (3) imply that K maps to 0
every line in the proof. This contradicts property (4) which claims K can not map last line to 0.

We now show such operator K. Assume I is a set of row indexes contained in [q] and consider
the set of polynomials I containing Fi for i ∈ I and also containing all PCR axioms. We denote as
RI(p) the residue of polynomial p modulo the ideal generated by I. More concretely

RI(p) = argmin
q
{p− q =

∑
s∈I

hss}

for some hs multivariate polynomials. We write I ` p if p is in the ideal generated by I.

Definition 4. (Function I and operator K)
Fix a monomial t: we can write t = t1t2 · · · tqt′ where each ti contains only variables indexed

by i ∈ [q] and t′ contains only xjl variables.
I(t) is the set of i ∈ [q] such that ideg(ti) ≥ r. K(t) is equal to RI(t)(t). On a formal

polynomial p =
∑
i citi we define K(p) :=

∑
i ciK(ti).

We now check that K satisfies properties (1)-(4). (1) comes from the definition. (2) If a premise
p is an axiom then any of its terms is reduced with respect to an ideal which contains p itself. Any
premise p in Fi is a monomial t which contains more than r variables indexed by i. Thus such p is in
the ideal I(t). This implies p is reduced to 0. (4) is true because I(1) contains a set of polynomials
with a common 0-1 solution.

To prove (3) we need the following results about ideals:

Lemma 3. For any polynomial p and ideal I generated by q1, q2, . . . , qm, all variables appearing
in RI(p) also occur in p, q1, q2, . . . , qm.

Proof. Let x be a variable occurring in RI(p) and not in p nor in any generator qi. By definition
p − RI(p) =

∑
i hiqi for some polynomials hi thus by setting x to 0 we obtain p − RI(p) �x=0=∑

i(hi �x=0)qi where RI(p) �x=0 is strictly smaller than RI(p). This contradicts the fact RI(p) is
the minimum according to <P.

Corollary 1. Let m1,m2 two monomials, if t is a monomial in m1 · RI(m2)(m2) then I(t) ⊆
I(m1m2).

8

Proof. If i′ ∈ I(t)/I(m1m2) then variables indexed by i′ in t are more than r. No such variable
is contained in Fi for i′ 6= i. Thus by Lemma 3 any term in RI(m2)(m2) does not contain more of
such variables than m2 itself contains. Such i′-indexed variables are then contained in the union of
the variable of m1 and m2. Thus i′ ∈ I(m1m2) but this contradicts the assumption.

Next lemma is the heart of the argument: it shows how a small index-degree derivation has local
behavior. The set of premises needed in the derivation is a subset of the one given by the operator I .

Lemma 4. Let t be a monomial of index-degree≤ rm and I(t) ⊆ I with |I| ≤ m. Then RI(t)(t) =
RI(t).

Proof. We will show an assignment ρ such that t �ρ= t and I �ρ⊆ I(t). This is sufficient since

I �ρ` t �ρ −RI(t) �ρ

By properties of ρ we get I(t) ` t − RI(t) �ρ. This means RI(t) �ρ is bigger than RI(t)(t) in the
order among polynomials. It is also smaller than RI(t) because a partial assignment can’t increase
the order. Notice that we also have RI(t) smaller than RI(t)(t) because I(t) is a subset of I and
residue is monotone decreasing with respect to the subscript set.

We now consider J the set in indexes j ∈ [n] such that t contains less than r variables among
xj1, . . . , xjs. Thus |J | ≥ n−m.

Notice that because of r-surjectivity of generators we have that for any j ∈ J and any vector
v = v1 . . . vq in the image of Gj there is a boolean partial assignment αj on “xj” variables such
that no variable in t is assigned and Gj(α) = v. We choose a v such that for any i in I we have
vi = 0. Such choice is possible because |I| ≤ m and v is a column in a Paley matrix of appropriate
size. We add αj for j ∈ J in ρ. Such partial assignment does not restrict t, and set to 0 all equations
xj(α)yi(β)zjik = 0 for any j ∈ J , i ∈ I , k ∈ [q]. Other equations are left untouched.

We now consider a row i0 in I/I(t) and t0 the monomial containing all variables in t indexed
by i0. We extend ρ to satisfy all remaining equations in Fi0 . To achieve such result we notice there
is at least one circuit copy Ci0k such that no variables in t correspond to a gate of such a circuit,
otherwise it would be ideg(t0) ≥ r and i0 would be in I(t). For the same reason we also know in t
there are less than r variables among yi01 . . . yi0s. Both observation together imply there is a partial
assignment on yi0l variables not contained in t such that yi0(β) = 0 for all β with Ai0(β) 6= k. So
far all equations in Fi0 are satisfied with the exception of the ones corresponding to circuit Ci0k. We
set zji0k to 0 when j ∈ J and 1 otherwise. Then we propagate values among the circuit equations
accordingly. We remark that being |J | ≤ n −m, then |[n] \ J | ≤ m < w(C) and hence we have
0 at the output gate. This satisfies all clauses in Fi0k without touching t. We continue to extend ρ
in this way for all i ∈ I/I(t). The resulting assignment satisfies the requested properties. Thus the
lemma is proved.

Lemma 5. If the index-degree of a monomial t is less than rm then K(xt) = K(xK(t))

Proof. Consider a monomial t of index-degree less than rm. We will prove that both K(xt) and
K(xK(t)) are equal to RI(xt)(xK(t)). Consider the following chain of equations.

K(xt) = RI(xt)(xt) (6)
= RI(xt)(xRI(xt)(t)) (7)
= RI(xt)(xRI(t)(t)) (8)
= RI(xt)(xK(t)) (9)

The equation (6) is the definition; (7) becauseRI is an homomorphism on the ring of multivariate
polynomials; (8) holds because of Lemma 4; (9) holds because of the definition of K. Let us denote
xK(t) as

∑
i αiti in the next chain of equations.

9

K(xK(t)) = K(
∑
i

αiti) (10)

=
∑
i

αiK(ti) (11)

=
∑
i

αiRI(ti)(ti) (12)

=
∑
i

αiRI(xt)(ti) (13)

= RI(xt)(
∑
i

αiti) (14)

= RI(xt)(xK(t)) (15)

The first lines holds because the notation just introduced; (11) by linearity of K; (12) by def-
inition of K; (13) holds because any ti is a monomial in xRI(t)(t). We now use Corollary 1 to
claim I(ti) is a subset of I(xt), which has size less than m. Lemma 4 finally implies the equation.
By using linearity we get (14) and by reverting the change of notation we conclude the proof with
equation (15).

5 Main Result
In this section we prove a result similar to Lemma 3.1 in [2] for the systems HN and PCR. The result
obtained in Section 3 of [2] depends on Resolution system, while the self-improvement technique
developed in Section 4 of [2] refers to MMCSA amplification and is independent from the proof
system adopted.

Lemma 6. Let C be a monotone circuit, and w an integer parameter. Assume r = Θ(w):

1. Any PCR refutation of F (C,w, r) has size at least

2Ω(w·min{w(C),w})

2. If w(C) ≤ w then there is a HN proof of F (C,w, r) of size

|C| · 2O(w·w(C))

Proof. (1) Lower bound. The strategy here follows [2]: we deduce a degree lower bound on the
PCR refutation of F (C,w, r) and then we use a random restriction argument to deduce the size lower
bound.

The restriction: for each input set of the generators and activators we restrict uniformly indepen-
dently at random a set of r/2 of the s variables. For each i ∈ [q] we also choose independently r/2
circuit copies of the r available and we restrict randomly all the gates of such copies. This restriction
(up to index reordering) is essentially subsumed by F (C,w, r/2). For any restricted variable we fix
the corresponding dual variable to the appropriate value.

Fix d := r
4 · min{w(C) − 1, w}. We show that any monomial with index-degree bigger that

d is set to zero with probability at least 1 − 2−Ω(d). Fix a polynomial t of index degree at least d.
We know t = t1 · · · tdt′ where ti is either a power of a generator variable, an activator variable or a
non empty product of variables corresponding to a particular circuit Cik. We can assume variables
in tis to be disjoint. We want to estimate the probability that ti is set to 0 by the random restriction,
assuming t1 . . . ti−1 haven’t been. Consider the case ti is a generator or an activator variable: s is
the number of such variables for each generator and activator. With at least r/2s probability ti is
chosen among the restricted variables. Then with probability at least r/4s the monomial is set to
zero. Notice that r/4s is a constant by construction. In the case ti is a product of variables of Cik
for some i and k then such circuit is chosen to be restricted with probability at least 1/2 because

10

no previous one has been, and the product is restricted to zero with at least probability 1/4. The
probability of the monomial not to be set to zero is then at most cd for some c > 1.

For a partial assignment ρ distributed as described Π �ρ is a proof of F (C,w, r) �ρ and of
F (C,w, r/2). Assuming that Π is of size smaller than cd then by union bound there is a restriction
ρ such that Π �ρ is a proof of degree less than d for F (C,w, r/2). This is in contradiction with the
index-degree lower bound proved in Section 4.
(2) Upper bound. In the hypothesis the principle is unsatisfiability because of Fact 2. In this case
a tree-like refutation of size |C|2O(w·w(C)) for F (C,w, r) exists as it is shown in [2]. Such proof
can be simulated in PC and PCR easily. For PC the absence of dual variables leads to manipulate
big representations of polynomials, but the asymptotic complexity of the proof stays the same. For
completeness we also show a proof in HN.

We now assume wlog the first 1 . . . w(C) inputs correspond to the minimum satisfying assign-
ment.

We have to prove there are multiples of premises which sum up to 1. Notice that by defini-
tion of characteristic functions we have 1 =

∑
α∈{0,1}s xj(α) for any j ∈ [n] and also 1 =∑

β∈{0,1}s yi(β) for any i ∈ [q]. Then we get 1 =
∑
α1...αw(C)β

x1(α1) · · ·xw(C)(αw(C))yi(β)

for any i, in particular we fix i := i(α1, . . . , αw(C)) to be such that the ith row is the one containing
a satisfying assignment generated by α1 . . . αw(C). This immediately implies there is a value k for
which Cik outputs 1. Fix p0 := x1(α1) · · ·xw(C)(αw(C))yi(β) be one of the polynomials in the
sum, and let be k the corresponding activated circuit.

We now show that p0 can be written as sum of premises: consider the propagation of the sat-
isfying assignment through Cik (from now on we drop the ik indexes for sake of notation). There
is a minimal sequence of gates z1 . . . zm in the circuit such that zm is the output gate, z1 . . . zw(C)

are the input gates activated by generators, for any AND gate both input gates are predecessors in
the sequence, for any OR gate at least one of its predecessor is also a predecessor in the sequence.
We denote pl := p0z

1 · · · zl. We prove by backward induction on l that pl is provable in Hilbert
Nullstellensatz.

Base case: pm is a multiple of yi(β)zmik which is a premise.
Induction step: assuming pl is provable. By minimality the gate zl is activated by some prede-

cessor(s) in the sequence. Then pl−1 = pl−1(1 − zl − z̄l) + pl−1z̄
l + pl−1z

l. The first part comes
from boolean axioms, the second part is a multiple of yi(β)zAikz

l
ik (respectively yi(β)zAikz

B
ikz

l
ik) if

the gate is an OR (respectively an AND), the third part comes from inductive hypothesis.
Then p0 can be proved in |C|O(1) . The number of such polynomials to prove are 2s·w(C)+s.
To prove that the sum of characteristic functions is 1 it is sufficient an extensive use of boolean

axioms of dual variables. This leads to a proof of size |C|O(1) · 2s·w(C)+s + 2O(s·w(C)+s). By using
the fact that s = Θ(r + w) we get the final claims.

Lemma 3.1 of [2] can be now be rephrased for PCR and HN, as follows

Lemma 7. There exists a polynomial time computable function τ which maps any pair 〈C, 1m〉,
where C is a monotone circuit and m is an integer into an unsatisfiable CNF τ(C,m) such that:

• there is a HN proof of τ(C,m) of size |C|mO(min(w(C),logm))

• Any PCR refutations of τ(C,m) has size at least mΩ(min(w(C),logm))

Proof. Follow Lemma 3.1 of [2]. Set w = logm/4 and r = dlogme and s = αdlogme (see dis-
cussion about r-surjectivity), exactly as Lemma 3.1 of [2]. The formula τ(C,m) is F (C,w, r) ∧ τm
where τm is the pigeon hole principle PHPn+1

n where n = log2m and axioms are extended with
pi,j + p̄i,j − 1 for (i, j) ∈ [n+ 1]× [n]. The pij variables of pigeon hole principle are disjoint from
F (C,w, r) ones. The claim follows by Lemma 6 (notice that r = Θ(w) and s = Θ(w+ r)). Notice
that on the PHPn+1

n , HN polynomially simulates treelike Resolution and that Feasible Interpolation
and the Weak Feasible Disjunction properties hold for Polynomial Calculus (see [19, 20]).

Theorem 2.5 and Theorem 2.7 in [2] can be rephrased for HN and PCR proof system as follows.

11

Theorem 5. If any of HN, PC and PCR is automatizable then for a fixed ε > 0 there exists an
algorithm Φ working on monotone circuits C which runs in time exp

(
w(C)O(1)

)
|C|O(1) and ap-

proximates the value of w(C) to within a factor (1 + ε).

Theorem 6. If HN, PC or PCR are automatizable then MMCSA ∈ co− FPR.

Proof. (Theorem 5 and 6) Refer to Lemma 4.1 in [2]. Because of our lower and upper bounds we
can use the same proof for HN, PC or PCR instead of Resolution. Then the proof of both theorems
follow in the same way as in [2].

6 Open Problems
The construction is complex and probabilistic. Would be nice to derandomize it and/or simplify it.
A new proof would also help to solve the following open problem: is it possible to find a proof of
size quasi-polynomial in the size of the shortest proof? It is conjectured that Resolution, PC and
PCR cannot be quasi-automatized. The construction used in this paper and in [2] also proves non
automatizability for tree-like resolution, which is quasi-automatizable. Thus it is very unlikely that
a modification of this construction could be used for non quasi-automatizability.

References
[1] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:

Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science, pages
190–199, 2001.

[2] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless
W[P] is tractable. SIAM J. Comput., 38(4):1347–1363, 2008.

[3] Noga Alon. Tools from higher algebra. In Handbook of combinatorics (vol. 2), pages 1749–
1783. MIT Press, Cambridge, MA, USA, 1995.

[4] Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and related
propositional proof systems. Inf. Comput., 189(2):182–201, 2004.

[5] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In 37th
Annual Symposium on Foundations of Computer Science, pages 274–282. IEEE, 1996.

[6] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 517–
526, 1999.

[7] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi.
Non-automatizability of bounded-depth frege proofs. Computational Complexity, 13(1-2):47–
68, 2004.

[8] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
frege systems. SIAM J. Comput., 29(6):1939–1967, 2000.

[9] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, pages 174–183, 1996.

[10] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms : An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3rd edition. Springer, 2007.

[11] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[12] Nicola Galesi and Massimo Lauria. Degree lower bounds for a graph ordering principle. Sub-
mitted. See http://www.dsi.uniroma1.it/˜galesi/publications.html.

[13] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.

[14] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

12

[15] Stasys Jukna. Extremal Combinatorics: with Applications in Computer Science. Springer,
2001.

[16] Jan Krajı́cek. Interpolation and approximate semantic derivations. Math. Log. Q., 48(4):602–
606, 2002.

[17] Jan Krajı́cek and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

ef. In Daniel Leivant, editor, LCC, volume 960 of Lecture Notes in Computer Science, pages
210–220. Springer, 1994.

[18] Toniann Pitassi. Algebraic propositional proof systems. In Neil Immerman and Phokion G.
Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 215–244. American Mathe-
matical Society, 1996.

[19] P. Pudlák. On reducibility and symmetry of disjoint np-pairs. Theoretical Computer Science,
295:626–638, 2003.

[20] P. Pudlák and J. Sgall. Algebraic models of computation and interpolation for algebraic proof
systems. DIMACS series in Theoretical Computer Science, 39:279–296, 1998.

[21] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complex-
ity, 7(4):291–324, 1998.

[22] J. H. van Lint. Introduction to Coding Theory (Graduate Texts in Mathematics). Springer-
Verlag, 3rd edition, 1998.

13

