
ar
X

iv
:2

01
2.

09
47

6v
1

 [
cs

.C
C

]
 1

7
D

ec
 2

02
0

Clique Is Hard on Average for Regular Resolution

Albert Atserias1, Ilario Bonacina1, Susanna F. de Rezende2, Massimo Lauria3,

Jakob Nordström4 and Alexander Razborov5

1Universitat Politècnica de Catalunya
2Institute of Mathematics of the Czech Academy of Sciences

3Sapienza - Università di Roma
4University of Copenhagen and Lund University

5University of Chicago and Steklov Mathematical Institute

December 18, 2020

Abstract

We prove that for k ≪ 4
√
n regular resolution requires length n

Ω(k) to establish that an

Erdős–Rényi graph with appropriately chosen edge density does not contain a k-clique. This

lower bound is optimal up to the multiplicative constant in the exponent, and also implies uncon-

ditional nΩ(k) lower bounds on running time for several state-of-the-art algorithms for finding

maximum cliques in graphs.

1 Introduction

Deciding whether a graph has a k-clique is one of the most basic computational problems on graphs,

and has been extensively studied in computational complexity theory ever since it appeared in

Karp’s list of 21 NP-complete problems [Kar72]. Not only is this problem widely believed to

be intractable to solve exactly (unless P = NP), there does not even exist any polynomial-time

algorithm for approximating the maximum size of a clique to within a factor n1−ǫ for any constant

ǫ > 0, where n is the number of vertices in the graph [Hås99, Zuc07]. Furthermore, the problem

appears to be hard not only in the worst case but also on average in the Erdős-Rényi random graph

model—we know of no efficient algorithms for finding cliques of maximum size asymptotically

almost surely on random graphs with appropriate edge densities [Kar76, Ros10].

In terms of upper bounds, the k-clique problem can clearly be solved in time roughly nk simply

by checking if any of the
(
n
k

)
many sets of vertices of size k forms a clique. This takes polynomial

time if k is constant. This can be improved slightly to O(nωk/3), where ω ≤ 2.373 is the matrix

1

http://arxiv.org/abs/2012.09476v1

multiplication exponent, using algebraic techniques [NP85], although in practice such algebraic

algorithms are outperformed by combinatorial ones [Vas09].

The motivating problem behind this work is to determine the exact time complexity of the clique

problem when k is given as a parameter. As noted above, all known algorithms require time nΩ(k).

It appears quite likely that some dependence on k is needed in the exponent, since otherwise we

have the parameterized complexity collapse FPT = W[1] [DF95]. Even more can be said if we

are willing to believe the Exponential Time Hypothesis (ETH) [IP01]—then the exponent has to

depend linearly on k [CHKX04], so that the trivial upper bound is essentially tight.

Obtaining such a lower bound unconditionally would, in particular, imply P 6= NP, and so cur-

rently seems completely out of reach. But is it possible to prove nΩ(k) lower bounds in restricted but

nontrivial models of computation? For circuit complexity, this challenge has been met for circuits

that are of bounded depth [Ros08] or are monotone [Ros14]. In this paper we focus on computa-

tional models that are powerful enough to capture several algorithms that are used in practice.

When analysing such algorithms, it is convenient to view the execution trace as a proof estab-

lishing the maximum clique size for the input graph. In particular, if this graph does not have a

k-clique, then the trace provides an efficiently verifiable proof of the statement that the graph is

k-clique-free. If one can establish a lower bound on the length of such proofs, then this implies a

lower bound on the running time of the algorithm, and this lower bound holds even if the algorithm

is a non-deterministic heuristic that somehow magically gets to make all the right choices. This

brings us to the topic of proof complexity [CR79], which can be viewed as the study of upper and

lower bounds in restricted nondeterministic computational models.

Using a standard reduction from k-clique to SAT, we can translate the problem of k-cliques

in graphs to that of satisfiability of formulas in conjunctive normal form (CNF). If an algorithm

for finding k-cliques is run on a graph G that is k-clique-free, then we can extract a proof of the

unsatisfiability of the corresponding CNF formula—the k-clique formula onG—from the execution

trace of the algorithm. Is it possible to show any non-trivial lower bound on the length of such

proofs? Specifically, does the resolution proof system—the method of reasoning underlying state-

of-the-art SAT solvers [BS97, MS99, MMZ+01]—require length nΩ(k), or at least nωk(1) (i.e. the

exponent as a function of k is not bounded by a constant), to prove the absence of k-cliques in a

graph? This question was asked in, e.g., [BGLR12] and remains open.

The hardness of k-clique formulas for resolution is also a problem of intrinsic interest in proof

complexity, since these formulas escape known methods of proving resolution lower bounds for a

range of interesting values of k includingk = O(1). In particular, the interpolation technique [Kra97,

Pud97], the random restriction method [BP96], and the size-width lower bound [BW01] all seem

to fail.

To make this more precise, we should mention that some previous works do use the size-width

method, but only for very large k. It was shown in [BIS07] that for n5/6 ≪ k ≤ n/3 resolution re-

quires length exp
(
nΩ(1)

)
to certify that a dense enough Erdős-Rényi random graph is k-clique-free.

The constant hidden in the Ω(1) increases with the density of the graph and, in particular, for very

dense graphs and k = n/3 the length required is 2Ω(n). Also, for a specially tailored CNF encoding,

where the ith member of the claimed k-clique is encoded in binary by log n variables, a lower bound

of nΩ(k) for k ≤ log n can be extracted from a careful reading of [LPRT17]. However, in the more

2

natural unary encodings, where indicator variables specify whether a vertex is in the clique, the

size-width method cannot yield more than a 2Ω(k2/n) lower bound since there are resolution proofs

of width O(k). This bound becomes trivial when k ≤ √n.

In the restricted subsystem of tree-like resolution, optimal nΩ(k) length lower bounds were es-

tablished in [BGL13] for k-clique formulas on complete (k − 1)-partite as well as on average for

Erdős-Rényi random graphs of appropriate edge density. There is no hope to get hard instances for

general resolution from complete (k − 1)-partite graphs, however—in the same paper it was shown

that all instances from the more general class of (k − 1)-colourable graphs are easy for resolution.

A closer study of these resolution proofs reveals that they are regular, meaning that if the proof is

viewed as a directed acyclic graph (DAG), then no variable is eliminated more than once on any

source-to-sink path.

More generally, regular resolution is an interesting and non-trivial model to analyse for the

k-clique problem since it captures the reasoning used in many state-of-the-art algorithms used in

practice (for a survey, see, e.g., [Pro12, McC17]). Nonetheless, it has remained consistent with state-

of-the-art knowledge that for k ≤ n5/6 regular resolution might be able to certify k-clique-freeness

in polynomial length independent of the value of k.

Our contributions We prove optimal nΩ(k) average-case lower bounds for regular resolution

proofs of unsatisfiability for k-clique formulas on Erdős-Rényi random graphs.

Theorem 1.1 (Informal). For any integer k ≪ 4
√
n, given an n-vertex graph G sampled at random

from the Erdős-Rényi model with the appropriate edge density, regular resolution asymptotically

almost surely requires length nΩ(k) to certify that G does not contain a k-clique.

At a high level, the proof is based on a bottleneck counting argument in the style of [Hak85] with

a slight twist that was introduced in [RWY02]. In its classical form, such a proof takes four steps.

First, one defines a distribution of random source-to-sink paths on the DAG representation of the

proof. Second, a subset of the vertices of the DAG is identified—the set of bottleneck nodes—such

that any random path must necessarily pass through at least one such node. Third, for any fixed

bottleneck node, one shows that it is very unlikely that a random path passes through this particular

node. Given this, a final union bound argument yields the conclusion that the DAG must have many

bottleneck nodes, and so the resolution proof must be long.

The twist in our argument is that, instead of single bottleneck nodes, we need to define bottleneck

pairs of nodes. We then argue that any random path passes through at least one such pair but that few

random paths pass through any fixed pair; the latter part is based on Markov chain-type reasoning

similar to [RWY02, Theorems 3.2, 3.5]. Furthermore, it crucially relies on the graph satisfying a

certain combinatorial property, which captures the idea that the common neighbourhood of a small

set of vertices is well distributed across the graph. Identifying this combinatorial property is a key

contribution of our work. In a separate argument (that, surprisingly, turned out to be much more

elaborate than most arguments of this kind) we then establish that Erdős-Rényi random graphs of

the appropriate edge density satisfy this property asymptotically almost surely. Combining these

two facts yields our average-case lower bound.

The idea of counting bottlenecks of more than one node comes from [RWY02] and was also

used in [BBI16].

3

Another contribution of this paper is a relatively simple observation that not only is regular

resolution powerful enough to distinguish graphs that contain k-cliques from (k − 1)-colourable

graphs [BGL13], but it can also distinguish them from graphs that have a homomorphism to any

fixed graph H with no k-cliques.

Recent Developments A preliminary version of this work appeared in the proceedings of the

STOC’18 conference [ABdR+18]. The techniques used there to prove the nΩ(k) average-case lower

bound for regular resolution were recently extended by Pang [Pan19] to work for a proof system

between regular and general resolution. In the same paper, Pang also shows a 2Ω(k(1−ǫ)) resolution

lower bound for k-clique formulas on Erdős-Rényi random graphs, for k = nc, c < 1/3 and ǫ > 0.

Regarding the proof complexity of k-clique formulas for tree-like resolution, the lower bounds

from [BGL13] and [LPRT17] were simplified and unified in [Lau18]. The resolution lower bound

in [LPRT17] for k-clique formulas on Erdős-Rényi random graphs under the binary encoding was

recently extended to an nΩ(k)/d(s) lower bound for Res(s), where s = o((log log n)1/3) and d(s) is

a doubly exponential function [DGGM20].

Paper outline The rest of this paper is organized as follows. Section 2 presents some preliminar-

ies. We show that some nontrivial k-clique instances are easy for regular resolution in Section 3.

Section 4 contains the formal statement of the lower bounds we prove for Erdős-Rényi random

graphs. In Section 5 we define a combinatorial property of graphs and show that clique formulas

on such graphs are hard for regular resolution, and the proof that Erdős-Rényi random graphs sat-

isfy this property asymptotically almost surely is in Section 6. Section 7 explains why our results

imply lower bounds on the running time of state-of-the-art algorithms for k-clique. We conclude

in Section 8 with a discussion of open problems.

2 Preliminaries

We write G = (V,E) to denote a graph with vertices V and edges E, where G is always undirected,

without loops and multiple edges. Given a vertex v ∈ V , we write N(v) to denote the set of

neighbours of v. For a set of vertices R ⊆ V we write N̂(R) =
⋂

v∈R N(v) to denote the set

of common neighbours of R. For two sets of vertices R ⊆ V and W ⊆ V we write N̂W (R) =

N̂(R) ∩W to denote the set of common neighbours of R inside W . For a set U ⊆ V we denote

by G[U] the subgraph of G induced by the set U . For n ∈ N
+ we write [n] = {1, . . . , n}. We

say that V1

.∪ V2

.∪ · · · .∪ Vk = V is a balanced k-partition of V if for all i, j ∈ [k] it holds that

|Vi| ≤ |Vj|+ 1. All logarithms are natural (base e) if not specified otherwise.

Probability and Erdős-Rényi random graphs We often denote random variables in boldface

and write X ∼ D to denote that X is sampled from the distribution D . A p-biased coin, or a

Bernoulli variable, is the outcome of a coin flip that yields 1with probability p and 0with probability

1−p. We use the special case of Markov’s inequality saying that ifX is non-negative, thenPr[X ≥
1] ≤ E[X]. We also need the following special case of the multiplicative Chernoff bound: if X is

4

a binomial random variable (i.e., the sum of i.i.d. Bernoulli variables) with expectation µ = E[X],
then Pr[X ≤ µ/2] ≤ e−µ/8.

We consider the Erdős-Rényi distribution G (n, p) of random graphs on a fixed set V of n ver-

tices. A random graph sampled from G (n, p) is produced by placing each potential edge {u, v}
independently with probability p, 0 ≤ p ≤ 1 (the edge probability p may be a function of n).

A property of graphs is said to hold asymptotically almost surely on G (n, p(n)) if it holds with

probability that approaches 1 as n approaches infinity.

For a positive integer k, let Xk be the random variable that counts the number of k-cliques in a

random graph from G (n, p). It follows from Markov’s inequality that asymptotically almost surely

there are no k-cliques in G (n, p) whenever p and k are such that E[Xk] = p(
k
2)
(
n
k

)
approaches 0 as

n approaches infinity. This is the case, for example, if p = n−2η/(k−1) for k ≥ 2 and η > 1. Actually,

the clique number, i.e. the size of the largest clique, ω(G) for a graph G sampled from G (n, p) is a

well studied quantity and very strong concentrations bounds are known for it. For instance, one of

the first concentration results is that ω(G) = (2− o(1)) log 1
p
(n) with probability 1 as n→∞ (see

for instance [BE76]).

CNF formulas and resolution A literal over a Boolean variable x is either the variable x itself

(a positive literal) or its negation ¬x (a negative literal). A clause C = ℓ1∨· · ·∨ℓw is a disjunction

of literals; we say that the width of C is w. The empty clause will be denoted by⊥. A CNF formula

F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We think of clauses as sets of literals and of CNF

formulas as sets of clauses, so that order is irrelevant and there are no repetitions. For a formula F
we denote by Vars(F) the set of variables of F .

A resolution derivation from a CNF formula F is as an ordered sequence of clauses π =
(D1, . . . , DL) such that for each i ∈ [L] either Di is a clause in F or there exist j < i and k < i
such that Di is derived from Dj and Dk by the resolution rule

B ∨ x C ∨ ¬x
B ∨ C

, (2.1)

Di = B ∨ C, Dj = B ∨ x, Dk = C ∨ ¬x. We refer to B ∨ C as the resolvent of B ∨ x
and C ∨¬x over x, and to x as the resolved variable. The length (or size) of a resolution derivation

π = (D1, . . . , DL) is L and it is denoted by |π|. A resolution refutation of F , or resolution proof

for (the unsatisfiability of) F , is a resolution derivation from F that ends in the empty clause ⊥.

A resolution derivation π = (D1, . . . , DL) can also be viewed as a labelled DAG with the set of

nodes {1, . . . , L} and edges (j, i), (k, i) for each application of the resolution rule deriving Di from

Dj and Dk. Each node i in this DAG is labelled by its associated clause Di, and each non-source

node is also labelled by the resolved variable in its associated derivation step in the refutation. A

resolution refutation is called regular if along any source-to-sink path in its associated DAG every

variable is resolved at most once.

For a partial assignment ρ we say that a clause C restricted by ρ, denoted C↾ρ, is the trivial 1-

clause if any of the literals in C is satisfied by ρ or otherwise is C with all falsified literals removed.

We extend this definition to CNFs in the obvious way: (C1 ∧ · · · ∧ Cm)↾ρ = C1↾ρ ∧ · · · ∧ Cm↾ρ.

Applying a restriction preserves (regular) resolution derivations. To see this, observe that in every

5

application of the resolution rule, the restricted consequence either becomes identically 1, or it is

obtained, as before, by resolving the two restricted premises, or it is a weakening of one of them,

but weakenings can be removed at no cost. Thus, we have:

Fact 2.1. Let π be a (regular) resolution refutation of a CNF formulaF . For any partial assignment

ρ to the variables of F there is an efficiently constructible (regular) resolution refutation π↾ρ of the

CNF formula F↾ρ, so that the length of π↾ρ is at most the length of π.

Branching programs A branching program on variables x1, . . . , xn is a DAG that has one source

node and where every non-sink node is labelled by one of the variables x1, . . . , xn and has exactly

two outgoing edges labelled 0 and 1. The size of a branching program is the total number of nodes

in the graph. In a read-once branching program it holds in addition that along every path every

variable appears as a node label at most once.

For each node a in a branching program, let X(a) denote the variable that labels a, and let a0

and a1 be the nodes that are reached from a through the edges labelled 0 and 1, respectively. A

truth-value assignment σ : {x1, . . . , xn} → {0, 1} determines a path in a branching program in the

following way. The path starts at the source node. At an internal node a, the path is extended along

the edge labelled σ(X(a)) so that the next node in the path is aσ(X(a)). The path ends when it reaches

a sink. We write path(σ) for the path determined by σ. When extending the path from a node a to

the node aσ(X(a)), we say that the answer to the query X(a) at a is σ(X(a)) and that the path sets

the variable X(a) to the value σ(X(a)). For a node a of path(σ), let β(σ, a) be the restriction of

σ to the variables that are queried in path(σ) in the segment of the path that goes from the source

to a. For each node a of the branching program, let β(a) be the maximal partial assignment that

is contained in every β(σ, a) for all σ such that path(σ) passes through a. Equivalently, this is the

set of all those assignments xi 7→ γ for which the query xi is made, and answered by γ, along

every consistent path from the source to a. If the program is read-once, the consistency condition

becomes redundant.

The falsified clause search problem for an unsatisfiable CNF formula F is the task of finding

a clause C ∈ F that is falsified by a given truth value assignment σ. A branching program P on

the variables Vars(F) solves the falsified clause search problem for F if each sink is labelled by

a clause of F such that for every assignment σ, the clause that labels the sink reached by path(σ)
is falsified by σ. The minimal size of any regular resolution refutation of an unsatisfiable CNF

formula F is exactly the same as the minimal size of any read-once branching program solving the

falsified clause search problem for F . This can be seen by taking the refutation DAG and reversing

the edges to get a branching program or vice versa. For a formal proof see, e.g., [Kra95, Theorem

4.3].

The k-clique formula In order to analyse the complexity of resolution proofs that establish that a

given graph does not contain a k-clique we must formulate the problem as a propositional formula

in conjunctive normal form (CNF). We consider two distinct encodings for the clique problem

originally defined in [BIS07].

The first propositional encoding we present, Clique(G, k), is based on mapping of vertices to

clique members. This formula is defined over variables xv,i (v ∈ V, i ∈ [k]) and consists of the

6

following set of clauses:

¬xu,i ∨ ¬xv,j i, j ∈ [k], i 6= j, u, v ∈ V, {u, v} /∈ E , (2.2a)

∨

v∈V
xv,i i ∈ [k] , (2.2b)

¬xu,i ∨ ¬xv,i i ∈ [k], u, v ∈ V, u 6= v , (2.2c)

We refer to (2.2a) as edge axioms, (2.2b) as clique axioms and (2.2c) as functionality axioms. Note

that Clique(G, k) is satisfiable if and only if G contains a k-clique, and that this is true even if

clauses (2.2c) are omitted—we write Clique∗(G, k) to denote this formula with only clauses (2.2a)

and (2.2b).

The second version of clique formulas that we consider is the block encoding Cliqueblock(G, k).
This formula differs from the previous ones in that it requires a k-clique that has a certain “block-

respecting” structure. Let V1∪̇V2∪̇ · · · ∪̇Vk = V be a balanced k-partition of V , that is a partition

of V into k disjoint sets each of them of size at most one integer away from
|V |
k

. The formula

Cliqueblock(G, k), defined over variables xv, encodes the fact that the graph contains a transversal

k-clique, that is, a k-clique in which each clique member belongs to a different block. Formally,

for any positive k and any graph G, the formula Cliqueblock(G, k) consists of the following set of

clauses:

¬xu ∨ ¬xv u, v ∈ V, u 6= v, {u, v} /∈ E , (2.3a)

∨

v∈Vi

xv i ∈ [k] , (2.3b)

¬xu ∨ ¬xv i ∈ [k], u, v ∈ Vi, u 6= v . (2.3c)

We refer to (2.3a) as edge axioms, (2.3b) as clique axioms, and (2.3c) as functionality axioms.

Note that a graph can contain a k-clique but contain no transversal k-clique for a given partition.

Intuitively it is clear that proving that a graph does not contain a transversal k-clique should be easier

than proving it does not contain any k-clique, since any proof of the latter fact must in particular

establish the former. We make this intuition formal below.

Lemma 2.2 ([BIS07]). For any graph G and any k ∈ N
+, the size of a minimum regular resolu-

tion refutation of Clique(G, k) is bounded from below by the size of a minimum regular resolution

refutation of Cliqueblock(G, k).

This lemma was proven in [BIS07] for tree-like and for general resolution via a restriction argu-

ment, and it is straightforward to see that the same proof holds for regular resolution as well.

3 Graphs That Are Easy for Regular Resolution

Before proving our main nΩ(k) lower bound, in this section we exhibit classes of graphs whose

clique formulas have regular resolution refutations of fixed-parameter tractable length, i.e., length

7

f(k) · nO(1) for some function f . This illustrates the strength of regular resolution for the k-clique

problem. We note that the upper bounds claimed in this section hold not only for Clique(G, k) but

even for the subformula Clique∗(G, k) that omits the functionality axioms (2.2c).

The first example is the class of (k − 1)-colourable graphs. Such graphs are hard for tree-like

resolution [BGL13], and the known algorithms that distinguish them from graphs that contain k-

cliques are highly non-trivial [Lov79, Knu94]. The second example is the class of graphs that have

a homomorphism into a fixed k-clique free graph.

Recall that a homomorphism from a graph G = (V,E) into a graph G′ = (V ′, E ′) is a mapping

h : V → V ′ that maps edges {u, v} ∈ E into edges {h(u), h(v)} ∈ E ′. A graph is (k − 1)-
colourable if and only if it has a homomorphism into the (k − 1)-clique, which is of course k-

clique free. Therefore our second example is a generalization of the first one (but the function f(k)
becomes larger).

Both upper bounds follows from a generic procedure, based on Algorithm 1, that builds read-

once branching programs for the falsified clause search problem for Clique∗(G, k).
Given a k-clique free graph G define

I(G) =
{
G
[
N̂(R)

]
: R is a clique in G

}
. (3.1)

Proposition 3.1. There is an efficiently constructible read-once branching program for the falsified

clause search problem on formula Clique∗(G, k) of size at most |I(G)| · k2 · |V (G)|2.

Proof. We build the branching program recursively, following the strategy laid out by Algorithm 1.

For the base case k = 1, G must be the graph with no vertices. The branching program is a single

sink node that outputs the clique axiom of index 1, i.e., the empty clause.

For k > 1, fix n = |V (G)| and an ordering v1, . . . , vn of the vertices in V (G). We first build a

decision tree T by querying the variables xv1,k, xv2,k, . . . in order, until we get an answer 1, or until

all variables with second index k have been queried. If xvj ,k = 0 for all j ∈ [n] then the kth clique

axiom (2.2b) is falsified by the assignment (see line 9). Otherwise, let v be the first vertex in the

order where xv,k = 1. The decision tree now queries xw,i for all w ∈ V (G) \N(v) and all i < k to

check whether an edge axiom involving v is falsified (lines 4–5). If any of these variables is set to 1
the branching stops and the leaf node is labelled with the corresponding edge axiom ¬xv,k ∨¬xw,i.

The decision tree T built so far has at most kn2 nodes, and we can identify n “open” leaf nodes

av1 , av2 , . . . , avn , where avi is the leaf node reached by the path that sets xvi,k = 1 and that does

not yet determine the answer to the search problem. Let us focus on a specific node av for some

v ∈ V (G). The partial assignment path(av) sets v to be the kth member of the clique and every

vertex in V (G) \N(v) to not be in the clique. Let Gv be the subgraph induced on G by N(v), let

Sv be the set of variables xw,i for w ∈ N(v) and i < k, and let ρv be the partial assignment setting

xw,i = 0 for w ∈ V (G) \N(v) and i < k. Clearly ρv ⊆ path(av).
By the inductive hypothesis there exists a branching program Bv that solves the search problem

on Clique∗(Gv, k− 1) querying only variables in Sv. This corresponds to the recursive call for the

subgraph Gv and k−1 (lines 6–8). If we attach each Bv to av we get a complete branching program

for Clique∗(G, k). This is read-once because Bv only queries variables in Sv and these variables

are not in path(av).

8

Algorithm 1 Read-once branching program for the falsified clause search problem on

Clique∗(G, k).

Input : k ∈ N
+, a k-clique free graph G, an assignment

α :{xv,i for v ∈ V (G), i ∈ [k]} → {0, 1}
Output : A clause of Clique∗(G, k) falsified by α

1 Search(G, k, α): begin

2 for v ∈ V (G) do

3 if α(xv,k) = 1 then

4 for w ∈ V (G) \N(v) and i < k do

5 if α(xw,i) = 1 then return edge axiom ¬xv,k ∨ ¬xw,i (2.2a)

6 G′ ← G[N(v)]
7 α′ ← α restricted to variables xw,j for w ∈ V (G′) and 1 ≤ j ≤ k − 1
8 return Search(G′, k − 1, α′)

9 return the kth clique axiom (2.2b)

To prove that the composed program is correct we consider an assignment σ to the variables

in Sv and show that the clause output by Bv on σ is also a valid output for the search problem on

Clique∗(G, k), i.e., it is falsified by the assignment path(av) ∪ σ. Actually we show the stronger

claim that it is falsified by ρv ∪ σ, which is a subset of path(av) ∪ σ. To this end, note that if the

output of Bv on σ is an edge axiom of Clique∗(Gv, k − 1), this must be some ¬xu,i ∨ ¬xw,j for

i, j < k, which is also an edge axiom of Clique∗(G, k) and is falsified by σ. Now if the output of

Bv on σ is the ith clique axiom of Clique∗(Gv, k − 1), then σ falsifies
∨

w∈N(v) xv,i, and therefore

ρv ∪ σ falsifies the ith clique axiom of Clique∗(G, k).
The construction so far is correct but produces a very large branching program (in particular it

has tree-like structure on top). In order to create a smaller branching program, we observe that if

u, v ∈ V (G) are such that N(u) = N(w) then Gu = Gw, Bu = Bw and ρu = ρw. This observation

allows us to merge together all nodes av that have the same value of N(v) into a single node, and to

identify all the corresponding copies of the same branching program Bv. Now let us focus on some

node a∗ obtained by this merge process, and pick arbitrarily some av that was merged into it (the

specific choice is irrelevant). By construction ρv is consistent with all paths reaching a∗, but we can

claim further: ρv is consistent with all paths passing through a∗ because Bv only queries variables

in Sv, which is disjoint from the domain of ρv. Because of this last fact all paths that pass through

node a∗ and reach an output node b∗ in the attached copy of Bv must contain the partial assignment

ρv ∪ σ, where σ is the common partial assignment consistent with all paths from the root of Bv to

b∗. If b∗ outputs an edge axiom, this is already falsified by σ because of the correctness of Bv. If

b∗ outputs the ith clique axiom, the correctness of Bv guarantees that σ falsifies the ith axiom for

Gv, and therefore ρv ∪ σ falsifies the ith clique axiom of G. Hence the new branching program is

correct.

This merge process leads to having only one subprogram for each distinct induced subgraph at

9

each level of the recursion. In order to bound the size of this program, we decompose it into k levels.

The source is at level zero and corresponds to the graph G. At level i there are nodes corresponding

to all subgraphs induced by the common neighbourhood of cliques of size i. Each node in the ith
level connects to the nodes of the (i+1)th level by a branching program of size at most kn2. Notice

that an induced subgraph in I(G) cannot occur twice in the same layers, so the total size of the final

branching program is at most |I(G)| · k2n2 nodes.

We now proceed to prove the upper bounds mentioned previously. A graph G that has a homo-

morphism into a small k-clique free graphH may still have a large set I(G), making Proposition 3.1

inefficient. The first key observation is that if G has a homomorphism into a graph H then it is a

subgraph of a blown up version of H , namely, of a graph obtained by transforming each vertex ofH
into a “cloud” of vertices where a cloud does not contain any edge, two clouds corresponding to

two adjacent vertices in H have all possible edges between them, and two clouds corresponding to

two non-adjacent vertices in H have no edges between them. A second crucial point is that if G′ is

a blown up version of H then it turns out that |I(G′)| = |I(H)|, making Proposition 3.1 effective

for G′. The upper bound then follows from observing that the task of proving that G is k-clique

free should not be harder than the same task for a supergraph of G. Indeed Fact 3.2 formalises this

intuition. It is interesting to observe that the constructions in Proposition 3.1 and in Fact 3.2 are

efficient. The non-constructive part is guessing the homomorphism to H .

Fact 3.2. Let G = (V,E) and G′ = (V ′, E ′) be graphs with no k-clique such that V ⊆ V ′ and

E ⊆ E ′ ∩
(
V
2

)
. If Clique∗(G′, k) has a (regular) refutation of length L, then Clique∗(G, k) has a

(regular) refutation of length at most L.

Proof. Consider the partial assignment ρ that sets xv,i = 0 for every v 6∈ V and i ∈ [k]. The

restricted formula Clique∗(G′, k)↾ρ is isomorphic to Clique∗(G̃, k), where V (G̃) = V and E(G̃) =
E ′ ∩

(
V
2

)
, and thus, by Fact 2.1, has a (regular) refutation π of length at most L. Removing edges

from a graph only introduces additional edge axioms (2.2a) in the corresponding formula, therefore

Clique∗(G̃, k) ⊆ Clique∗(G, k) and π is a valid refutation of Clique∗(G, k) as well.

It was shown in [BGL13] that the k-clique formula of a complete (k − 1)-partite graph on n
vertices has a regular resolution refutation of length 2knO(1), although the regularity is not stressed

in that paper. Since it is instructive to see how this refutation is constructed in this framework, we

give a self-contained proof.

Proposition 3.3 ([BGL13, Proposition 5.3]). If G is a (k−1)-colourable graph on n vertices, then

Clique∗(G, k) has a regular resolution refutation of length at most 2kk2n2.

Proof. Let V = V (G) and let V1∪̇V2∪̇ . . . ∪̇V(k−1) be a partition of V into colour classes. Define

the graph G′ = (V,E ′) where the edge set E ′ has an edge between any pair of vertices belonging

to two different colour classes. Clearly G is a subgraph of G′. Observe that any clique R in G′ has

at most one vertex in each colour class, and that the common neighbours of R are all the vertices

in the colour classes not touched by R.

Therefore, there is a one-to-one correspondence between the members of I(G′) and the subsets

of [k−1]. By Proposition 3.1 there is a read-once branching program for the falsified clause search

10

problem on formula Clique∗(G′, k) of size at most 2kk2n2. This read-once branching program

corresponds to a regular resolution refutation of Clique∗(G′, k) of the same size. By Fact 3.2 there

must be a regular resolution refutation of size at most 2kk2n2 for Clique∗(G, k) as well.

Next we generalize Proposition 3.3 to graphs G that have a homomorphism to a k-clique free

graph H .

Proposition 3.4. If G is a graph on n vertices that has a homomorphism into a k-clique free graph

H on m vertices, then Clique∗(G, k) has a regular resolution refutation of length at most mkk2n2.

Proof. Fix a homomorphism h :V (G) → V (H) and an ordering u1, . . . , um of the vertices of H .

Let V1∪̇V2∪̇ . . . ∪̇Vm be the partition of V (G) such that Vi is the set of vertices of G mapped to ui

by h. We define the graph G′ = (V,E ′) where

E ′ =
⋃

{ui,uj}∈E(H)

Vi × Vj , (3.2)

that is, G′ is a blown up version of H that containsG as a subgraph. To prove our result we note that,

by Proposition 3.1, there is a read-once branching program for the falsified clause search problem

on Clique∗(G′, k)—and hence also a regular resolution refutations of the same formula—of size

at most |I(G′)| · k2n2. This implies that, by Fact 3.2, there is a regular resolution refutation of

Clique∗(G, k) of at most the same size.

To conclude the proof it remains only to show that |I(G′)| ≤ mk. By construction, h maps

injectively a clique R ⊆ V (G′) into a clique RH ⊆ V (H) of the same size. Moreover, note that

if U = N̂(RH), then N̂(R) = ∪ui∈UVi. Therefore, for any clique R′ ⊆ V (G′) that is mapped

by h to RH it holds that N̂(R) = N̂(R′), i.e., N̂(R′) is completely characterized by the clique

in H it is mapped to. Thus I(G) has at most one element for each clique in H and we have that

|I(G′)| = |I(H)|. Finally, note that |I(H)| ≤ mk since, being k-clique free, H cannot have more

than
∑k−1

i=0 m
i ≤ mk cliques.

4 Random Graphs Are Hard for Regular Resolution

The main result of this paper is an average case lower bound of nΩ(k) for regular resolution for the

k-clique problem. As we saw in Section 2, the k-clique problem can be encoded in different ways

and depending on the preferred formula the range of k for which we can obtain a lower bound differs.

In this section we present a summary of our results for the different encodings.

Theorem 4.1. For any real constant ǫ > 0, any sufficiently large integer n, any positive integer k ≤
n1/4−ǫ, and any real ξ > 1, if G ∼ G (n, n−2ξ/(k−1)) is an Erdős-Rényi random graph, then, with

probability at least 1−exp(−√n), any regular resolution refutation of Cliqueblock(G, k) has length

at least nΩ(k/ξ2).

The parameter ξ determines the density of the graph: the larger ξ the sparser the graph and

the problem of determining whether G contains a k-clique becomes easier. For constant ξ, the

11

edge probability implies the graph G has clique number concentrated around k/ξ and the theorem

yields a nΩ(k) lower bound which is tight up to the multiplicative constant in the exponent. The

lower bound decreases smoothly with the edge density and is non-trivial for ξ = o(
√
k).

A problem which is closely related to the problem we consider is that of distinguishing a random

graph sampled from G (n, p) from a random graph from the same distribution with a planted k-

clique. The most studied setting is when p = 1/2. In this scenario the problem can be solved in

polynomial time with high probability for k ≈ √n [Kuč95, AKS98]. It is still an open problem

whether there exists a polynomial time algorithm solving this problem for log n ≪ k ≪ √
n.

For G ∼ G (n, 1/2), setting ξ = k−1
2 log2(n)

, Theorem 4.1 implies that to refute Cliqueblock(G, k)

asymptotically almost surely regular resolution requires nΩ(log2(n)/k) size; which is nΩ(log n) size for

k = O(logn) and super-polynomial size for k = o(log2 n). We note that, in the case k = O(logn),
the lower bound is tight. This follows from Proposition 3.1 since asymptotically almost surely there

are at most nO(logn) different cliques in G ∼ G (n, 1/2) (because asymptotically almost surely the

largest clique has size at most 2 logn) and, therefore, the set I(G) in Proposition 3.1 has size at

most nO(logn).

An interesting question is whether Theorem 4.1 holds for larger values of k. We show that for

the formula Clique(G, k) (recall that by Lemma 2.2 this encoding is easier for the purpose of lower

bounds) we can prove the lower bound for k ≤ n1/2−ǫ as long as the edge density of the graph is

close to the threshold for containing a k-clique.

Theorem 4.2. For any real constant ǫ > 0, any sufficiently large integer n, any positive integer k,

and any real ξ > 1 such that k
√
ξ ≤ n1/2−ǫ, if G ∼ G (n, n−2ξ/(k−1)) is an Erdős-Rényi ran-

dom graph, then, with probability at least 1 − exp(−√n), any regular resolution refutation of

Clique(G, k) has length at least nΩ(k/ξ2).

In this paper we prove Theorem 4.1 and we refer to the conference version of this paper [ABdR+18]

for the proof of Theorem 4.2. We note, however, that both proofs are very similar and having seen

one it is an easy exercise to obtain the other. The proof of Theorem 4.1 is deferred to Section 6 and

is based on a general lower bound technique we develop in Section 5.

5 Clique-Denseness Implies Hardness for Regular Resolution

In this section we define a combinatorial property of graphs, which we call clique-denseness, and

prove that if a k-clique-free graph G is clique-dense with the appropriate parameters, then this

implies a lower boundnΩ(k) on the length of any regular resolution refutation of the k-clique formula

on G.

In order to argue that regular resolution has a hard time certifying the k-clique-freeness of a

graph G, one property that seems useful to have is that for every small enough clique in the graph

there are many ways of extending it to a larger clique. In other words, if R ⊆ V forms a clique

and R is small, we would like the common neighbourhood N̂V (R) to be large. This motivates the

following definitions.

12

Definition 5.1 (Neighbour-dense set). Given G = (V,E) and q, r ∈ R
+, a set W ⊆ V is q-neigh-

bour-dense for R ⊆ V if
∣∣N̂W (R)

∣∣ ≥ q. We say that W is (r, q)-neighbour-dense if it is q-neigh-

bour-dense for every R ⊆ V of size |R| ≤ r.

If W is an (r, q)-neighbour-dense set, then we know that any clique of size r can be extended

to a clique of size r + 1 in at least q different ways by adding some vertex of W . Note, however,

that the definition of (r, q)-neighbour-dense is more general than this since R is not required to be

a clique.

Next we define a more robust notion of neighbour-denseness. For some settings of r and q of

interest to us it is too much to hope for a set W that is q-neighbour-dense for every R ⊆ V of size

at most r. In this case we would still like to be able to find a “mostly neighbour-dense” set W in the

sense that we can “localize” bad (i.e., those for which W fails to be q-neighbour-dense) sets R ⊆ V
of size |R| ≤ r.

Definition 5.2 (Mostly neighbour-dense set). Given G = (V,E) and r′, r, q, s ∈ R
+ with r′ ≥ r, a

set W ⊆ V is (r′, r, q, s)-mostly neighbour-dense if there exists a set S ⊆ V of size |S| ≤ s such

that for every R ⊆ V with |R| ≤ r′ for which W is not q-neighbour-dense, it holds that |R∩S| ≥ r.

In what follows, it might be helpful for the reader to think of r′ and r as linear in k, and q and s
as polynomial in n, where we also have s≪ q.

Now we are ready to define a property of graphs that makes it hard for regular resolution to

certify that graphs with this property are indeed k-clique-free.

Definition 5.3 (Clique-dense graph). Given k ∈ N
+ and t, s, ε ∈ R

+, 1 ≤ t ≤ k we say that a

graph G = (V,E) with a k-partition V1 ∪ · · · ∪ Vk = V is (k, t, s, ε)-clique-dense if there exist

r, q ∈ R
+, r ≥ 4k/t2, such that

1. Vi is (tr, tq)-neighbour-dense for all i ∈ [k], and

2. every (r, q)-neighbour-dense set W ⊆ V is (tr, r, q′, s)-mostly neighbour-dense for q′ =
εrs1+ε log s.

Remark 1 (The complete (k − 1)-partite graph is not clique-dense). Since the property of clique-

denseness in Definition 5.3 is a sufficient condition for the lower bound, it is worth to pause and

observe that this property does not hold for examples such as (k − 1)-colourable graphs, which

have non-trivially short proofs.

Indeed, consider the (k − 1)-colourable graph G = (V,E) with balanced colour classes and

maximum edge set. Namely, V =
⋃

c Uc for c ∈ [k − 1] and |Uc| = n/(k − 1), and the edges of

G are all pairs {u, v} for u ∈ Uc and v ∈ Uc′ with c 6= c′. The graph G satisfies property (1) of

clique-denseness for any k-partition of V that splits each colour class roughly equally among parts,

but fails to satisfy property (2) in a rather extreme way. To see why, fix any integer r < k − 1 and

let W be the union of r + 1 arbitrarily chosen colour classes. The set W is (r, q)-neighbour-dense

for any q up to n/(k− 1), because the common neighbourhood of any r vertices in V must contain

one of the colour classes Uc ⊆W .

Can W be (tr, r, q′, s)-mostly neighbour-dense for some choice of parameters? First note that

tr ≥ r + 1 (since r ≤ k implies t ≥ 2) and that N̂W (R) = ∅ for any set R of size r + 1 that

13

has one vertex from each colour class in W . So in order for W to be (tr, r, q′, s)-mostly neighbour-

dense there should be a set S of size s ≪ q′ ≤ n/(k − 1) that has a large intersection with any

such R. This, however, is not possible since S cannot completely cover any of the colour classes

in W (because s ≪ n/(k − 1)) and thus, for any choice of S, there are sets R completely disjoint

from S for which N̂W (R) = ∅.

Theorem 5.4. Given k ∈ N
+ and t, s, ε ∈ R

+ if the graph G = (V,E) with balanced k-partition

V1 ∪ · · · ∪ Vk = V is (k, t, s, ε)-clique-dense, then every regular resolution refutation of the CNF

formula Cliqueblock(G, k) has length at least Ω
(
sεk/t

2)
.

The value of q′ in Definition 5.3 can be tailored in order to prove Theorem 4.1 for slightly larger

values of k. For example, setting q′ = 3εs1+ε log s and making the necessary modifications in the

proof would yield Theorem 4.1 for k ≪ n1/3 but for a smaller range of edge densities. A similar

adjustment was done in the conference version of this paper [ABdR+18] to obtain Theorem 4.2 for

k ≪ n1/2.

We will spend the rest of this section establishing Theorem 5.4. Fix r, q ∈ R
+ witnessing thatG

is (k, t, s, ε)-clique-dense as per Definition 5.3. We first note that we can assume that tr ≤ k since

otherwise, by property 1 of Definition 5.3, G contains a block-respecting k-clique and the theorem

follows immediately.

By the discussion in Section 2 it is sufficient to consider read-once branching programs, since

they are equivalent to regular resolution refutations, and so in what follows this is the language in

which we will phrase our lower bound. Thus, for the rest of this section let P be an arbitrary, fixed

read-once branching program that solves the falsified clause search problem for Cliqueblock(G, k).
We will use the convention of referring to “vertices” of the graph G and “nodes” of the branching

programP to distinguish between the two. We sometime abuse notation and say that a vertex v ∈ V
is set to 0 or to 1 when we mean that the corresponding variable xv is set to 0 or to 1.

Recall that for a node a of P , β(a) denotes the maximal partial assignment that is contained in

every β(σ, a) for all σ such that path(σ) passes through a, where β(σ, a) is the restriction of σ to

the variables that are queried in path(σ) in the segment of the path that goes from the source to

a. For any partial assignment β we write β1 to denote the partial assignment that contains exactly

the variables that are set to 1 in β. Clearly, if β falsifies an edge axiom or a functionality axiom,

then so does β1. Furthermore, for any γ ⊇ β, if β falsifies an axiom so does γ. We will use this

monotonicity property of partial assignments throughout the proof.

For each node a of P and each index i ∈ [k] we define two sets of vertices

V 0
i (a) = {u ∈ Vi | β(a) sets xu to 0} (5.1a)

V 1
i (a) = {u ∈ Vi | β(a) sets xu to 1} (5.1b)

of G. Observe that for β = β(a) the set of vertices referenced by variables in β1 is
⋃

i V
1
i (a).

Intuitively, one can think of V 0
i (a) and V 1

i (a) as the only sets of vertices in Vi assigned 0 and 1,

respectively, that are “remembered” at the node a (in the language of resolution, they correspond to

negative and positive occurrences of variables in the clause Da associated with the node a). Other

assignments to vertices in Vi encountered along some path to a have been “forgotten” and may not

be queried any more on any path starting at a. Formally, we say that a vertex v is forgotten at a

14

if there is a path from the source of P to a passing through a node b where v is queried, but v is

not in V 0
i (a) nor in V 1

i (a). Furthermore, we say index i is forgotten at a if some vertex v ∈ Vi

is forgotten at a. Of utter importance is the fact that these notions are persistent: if a variable or

an index is forgotten at a node a, then it will also be the case for any node reachable from a by a

path. We say that a path in P ends in the ith clique axiom if the clause that labels its last node is

the clique axiom (2.3b) of Cliqueblock(G, k) with index i. The above observation implies that the

index i cannot be forgotten at any node along such a path.

We establish our lower bound via a bottleneck counting argument for paths in P . To this end,

let us define a distribution D over paths in P by the following random process. The path starts at

the source and ends whenever it reaches a sink of P . At an internal node a with successor nodes a0

and a1, reached by edges labelled 0 and 1 respectively, the process proceeds as follows.

1. If X(a) = xu for u ∈ Vi and i is forgotten at a then the path proceeds via the edge labelled 0
to a0.

2. If X(a) = xu and β(a) ∪ {xu = 1} falsifies an edge axiom (2.3a) or a functionality ax-

iom (2.3c), then the path proceeds to a0.

3. Otherwise, an independent s−(1+ε)-biased coin is tossed with outcome γ ∈ {0, 1} and the

random path proceeds to aγ .

We say that in cases 1 and 2 the answer to the query X(a) is forced. Note that any path α in the

support of D must end in a clique axiom since α does not falsify any edge or functionality axiom by

item 2 in the construction. Moreover, a property that will be absolutely crucial is that only answers

0 can be forced—answers 1 are always the result of a coin flip.

Claim 5.5. Every path in the support of D sets at most k variables to 1.

Proof. Let α be a path in the support of D . We argue that for each i ∈ [k] at most one vertex u ∈ Vi

is such that the variable xu is set to 1 on α. Let a and b be two nodes that appear in this order in

α. If for some i ∈ [k], and for some u, v ∈ Vi, xu is set to 1 by α at node a and xv is queried at b,
then v 6= u by regularity and, by definition of D , the answer to query xv will be forced to 0, either

to avoid violating a functionality or an edge axiom, or because i is forgotten at b.

Let us call a pair (a, b) of nodes of P useful if there exists an index i such that V 1
i (b) = ∅, i is not

forgotten at b, and the set V 0
i (b)\V 0

i (a) is (r, q)-neighbour-dense. In particular, if a appears before

b in some path, then V 1
i (a) = ∅ and V 0

i (a) ⊆ V 0
i (b). For each useful pair (a, b), let i(a, b) be an

arbitrary but fixed index witnessing that (a, b) is useful. A path is said to usefully traverse a useful

pair (a, b) if it goes through a and b in that order and sets at most ⌈k/t⌉ variables to 1 between a
and b (with a included and b excluded).

As already mentioned, the proof of Theorem 5.4 is based on a bottleneck counting argument

in the spirit of [Hak85], with the twist that we consider pairs of bottleneck nodes. To establish the

theorem we make use of the following two lemmas which will be proven subsequently.

Lemma 5.6. Every path in the support of D usefully traverses a useful pair.

15

Lemma 5.7. For every useful pair (a, b), the probability that a random α chosen from D usefully

traverses (a, b) is at most 2s−εr/2.

Combining the above lemmas, it is immediate to prove Theorem 5.4. By Lemma 5.6 the proba-

bility that a random pathα sampled from D usefully traverses some useful pair is 1. By Lemma 5.7,

for any fixed useful pair (a, b), the probability that a random α usefully traverses (a, b) is at most

2s−εr/2. By a standard union bound argument, it follows that the number of useful pairs is at least
1
2
sεr/2, so the number of nodes in P cannot be smaller than Ω

(
sεr/4

)
≥ Ω

(
sεk/t

2)
(recall that

r ≥ 4k/t2 according to Definition 5.3).

To conclude the proof it remains only to establish Lemmas 5.6 and 5.7.

Proof of Lemma 5.6. Consider any path in the support of D . As we already remarked, this path

ends in the i∗th clique axiom for some i∗ ∈ [k] which in particular implies that V 1
i∗(b) = ∅ and

that i∗ is not forgotten at any b along this path. By Claim 5.5, the path sets at most k variables to 1
and hence we can split it into t pieces by nodes a0, a1, . . . , at (a0 is the source, at the sink) so that

between aj and aj+1 at most ⌈k/t⌉ variables are set to 1. It remains to prove that for at least one

j ∈ [t] the set

Wj = V 0
i∗(aj) \ V 0

i∗(aj−1) (5.2)

is (r, q)-neighbour-dense. Note that this will prove Lemma 5.6 since by construction (aj−1, aj) is

then a pair that is usefully traversed by the path.

Towards contradiction, assume instead that no Wj is (r, q)-neighbour-dense, i.e., that for all

j ∈ [t] there exists a set of vertices Rj ⊆ V with |Rj | ≤ r such that
∣∣N̂Wj

(Rj)
∣∣ ≤ q. Let

R =
⋃

j∈[t]Rj . Since the path ends in the i∗th clique axiom we have V 0
i∗(at) = Vi∗ . It follows that

the sets W1, . . . ,Wt in (5.2) form a partition of Vi∗ , and therefore

∣∣N̂Vi∗
(R)

∣∣ =
∑

j∈[t]

∣∣N̂Wj
(R)

∣∣ ≤
∑

j∈[t]

∣∣N̂Wj
(Rj)

∣∣ ≤ tq . (5.3)

Since |R| ≤ ∑
j∈[t]|Rj| ≤ tr this contradicts the assumption that Vi∗ is (tr, tq)-neighbour-dense.

Lemma 5.6 follows.

Proof of Lemma 5.7. Fix a useful pair (a, b). Let E denote the event that a random path sampled

from D usefully traverses (a, b). Let i∗ = i(a, b), V 1(a) =
⋃

j∈[k] V
1
j (a), and W = V 0

i∗(b) \ V 0
i∗(a).

Notice that W is guaranteed to be (r, q)-neighbour-dense by our definition of i(a, b). Since G is

(k, t, s, ε)-clique-dense by assumption, this implies that W is (tr, r, q′, s)-mostly neighbour-dense,

and we let S be the set that witnesses this as per Definition 5.2. We bound the probability of the

event E by a case analysis based on the size of the set V 1(a). We remark that all probabilities in the

calculations that follow are over the choice of α ∼ D .

Case 1 (|V 1(a)| > r/2): In this case, we simply prove that already the probability of reaching

a is small. By definition of V 1(a), we have that |β1(a)| = |V 1(a)|. Recall that every answer 1 is

necessarily the result of a s−(1+ε)-biased coin flip, and that all these decisions are irreversible. That

is, if a path ever decides to set a variable in V 1(a) to 0, then its case is lost and it is guaranteed to

miss a. Thus we can upper bound the probability of the event E by the probability that a random

16

α passes through a, and, in particular, by the probability of setting all variables in β1(a) to 1 as

follows:

Pr[E] ≤ Pr[α passes through a] (5.4)

≤
(
s−(1+ε)

)|β1(a)|
(5.5)

≤ s−ε|V 1(a)| (5.6)

≤ 2s−εr/2 . (5.7)

Case 2 (|V 1(a)| ≤ r/2): For every path α, let R(α) denote the set of vertices u set to 1 by the

path α at some node between a and b (with a included and b excluded); note that R(α) = ∅ if α
does not go through a and b, and that |R(α)| ≤ ⌈k/t⌉ for all paths α that satisfy the event E. For

the sets

R0 = {R : |R| ≤ ⌈k/t⌉ and
∣∣N̂W (R ∪ V 1(a))

∣∣ < q′} (5.8a)

R1 = {R : |R| ≤ ⌈k/t⌉ and
∣∣N̂W (R ∪ V 1(a))

∣∣ ≥ q′} (5.8b)

we have that

Pr[E] = Pr[E and R(α) ∈ R0] + Pr[E and R(α) ∈ R1] . (5.9)

The first term in (5.9) is bounded from above by the probability of R(α) ∈ R0. Note that

|R| ≤ ⌈k/t⌉ ≤ 2k/t ≤ tr/2 (since r ≥ 4k/t2) for R ∈ R0. Hence we have |R ∪ V 1(a)| ≤
tr/2 + r/2 ≤ tr and therefore |(R ∪ V 1(a)) ∩ S| ≥ r by the choice of S. Thus, the probability of

R(α) ∈ R0 is bounded by the probability that |R(α) ∩ S| ≥ r/2 since |V 1(a)| ≤ r/2. But since

S is small, we can now apply the union bound and conclude that

Pr[E and R(α) ∈ R0] ≤ Pr[R(α) ∈ R0] (5.10)

≤ Pr[|R(α) ∩ S| ≥ r/2] (5.11)

≤
(|S|
r/2

)
(s−(1+ε))r/2 (5.12)

≤ |S|r/2s−(1+ε)r/2 (5.13)

≤ s−εr/2 , (5.14)

where for (5.12) we used the same “irreversibility” argument as in Case 1.

We now bound the second term in (5.9). First note that, by definition of W, if α is a path that

passes through a and b in this order, then all u ∈ W must be set to 0 in α at some node between

a and b. For each path in the support of D that passes through a and b, some of the vertices in W
will be set to zero as a result of a coin flip and others will be forced choices.

Fix a path α contributing to the second term in (5.9). We claim that along this path all the ≥ q′

variables in N̂W (R(α) ∪ V 1(a)) are set to 0 as a result of a coin flip. Indeed, since V 1
i∗(b) = ∅ and

i∗ is not forgotten at b, by the monotonicity property the same holds for every node along α before b.
This implies that the answer to a query of the form xu (u ∈ W) made along α cannot be forced by

17

neither item 1 (forgetfulness) in the definition of D nor by a functionality axiom. Moreover, since

V 1(c) ⊆ R(α) ∪ V 1(a) for any node c on the path α between a and b, it holds that all variables xu

with u ∈ N̂W (R(α) ∪ V 1(a)) can not be forced to 0 by an edge axiom either.

The analysis of the second term in (5.9) is completed by the same type of argument as in Case

1, where we again use the fact that, due to the read-once property of the branching program, the

decisions that the random path makes are irreversible:

Pr[E and R(α) ∈ R1] ≤ Pr[α flips ≥ q′ coins and gets 0-answers] (5.15)

≤ (1− s−(1+ε))q
′

(5.16)

≤ s−εr/2 . (5.17)

Adding (5.14) and (5.17) we obtain the lemma.

6 Random Graphs Are Almost Surely Clique-Dense

In this section we show that asymptotically almost surely an Erdős-Rényi random graph G ∼
G (n, p) is (k, t, s, ε)-clique-dense for the right choice of parameters.

Theorem 6.1. For any real constant ε ∈ (0, 1/4), any sufficiently large integer n, any positive

integer k ≤ n1/4−ε, and any real ξ > 1, if G ∼ G (n, n−2ξ/(k−1)) is an Erdős-Rényi random

graph then with probability at least 1 − exp(−√n) it holds that G is (k, t, s, ε)-clique-dense with

t = 32ξ/ε and s =
√
n.

As a corollary of Theorem 5.4 and Theorem 6.1 we obtain Theorem 4.1, the main result of this

paper.

Proof of Theorem 4.1. Clearly t ≥ 1 as required by Definition 5.3. We can also assume w.l.o.g.

that t ≤ k since otherwise k/ξ2 ≤ 32/(ξǫ) ≤ O(1) and the bound becomes trivial. By plugging in

the parameters given by Theorem 6.1 to Theorem 5.4 we immediately get that any regular refutation

π of Cliqueblock(G, k) has length

|π| ≥ Ω
(
sεk/t

2) ≥ nΩ(k/ξ2) , (6.1)

as stated.

We will spend the rest of this section proving Theorem 6.1.

Let δ = 2ξ/(k − 1). We show that, with probability at least 1 − e−
√
n, the random graph G is

(k, t, s, ε)-clique-dense for parameters as in the statement of the theorem, r = 4k/t2 and q = n1−tδr

4kt
.

18

Recall that q′ = εrs1+ε log s. Let us argue that the parameters we use satisfy constraints

tδr ≤ ε

2
, (6.2)

log k + tr logn ≤ n1−tδr

32k
· 2 logn

n1/2
, (6.3)

qn−tδrs

16tr
≥ n1+ε

256
, (6.4)

q′ ≤ qn−tδr

4
· logn
nε/2

, (6.5)

tr ≤ q

2
, (6.6)

which will be used further on in the proof.

As a first step note that

tδr =
8ξk

t(k − 1)
≤ ε

2
, (6.7)

and hence (6.2) holds. Equation (6.3) follows from the chain of inequalities

log k + tr log n ≤ 2tr log n =
8k logn

t
≤ k log n

16
≤ n1/2−2ε log n

16k
≤ n1−tδr

32k
· 2 logn

n1/2
. (6.8)

To obtain (6.4) observe that

qn−tδrs

16tr
=

n1−2tδr+1/2

256k2
≥ n1−2tδr+2ε

256
≥ n1+ε

256
. (6.9)

To see that (6.5) holds, note that

q′ =
2εkn(1+ε)/2 log n

t2
≤ k2n(1+ε)/2 log n

16kt
≤ n1−3ε/2 logn

16kt
≤ qn−tδr

4
· log n
nε/2

. (6.10)

Finally, for (6.6), we just observe that

tr =
4k

t
≤ k3

8k2
≤ n1−tδr

8kt
=

q

2
, (6.11)

using the fact that k ≥ t and k3 ≤ n1−tδr.

We must now prove that asymptotically almost surely G is (k, t, s, ε)-clique-dense for the cho-

sen parameters. All probabilities in this section are over the choice of G, and all previously intro-

duced concepts like N̂W (R), neighbour-denseness etc. should be understood with respect to G as

well (so that they are actually random variables and events in this sample space). Let V = V (G)
and V1 ∪ · · · ∪ Vk = V be a balanced k-partition of V .

The fact that asymptotically almost surely Vi is (tr, tq)-neighbour-dense for all i ∈ [k] is quite

immediate. First, for any i ∈ [k] and any R ⊆ V with |R| ≤ tr,

E
[∣∣N̂Vi

(R)
∣∣] = |Vi \R|n−δ|R| ≥

(n
k
− tr

)
n−δtr ≥

(n
k
− q

2

)
n−δtr ≥ n1−δtr

2k
, (6.12)

19

where the second-to-last inequality follows from (6.6) and the last inequality from the trivial fact

that q ≤ n
k
. Hence, we can bound the probability that there exists an i ∈ [k] such that Vi is not

(tr, tq)-neighbour-dense by

Pr
[
∃i ∈ [k] ∃R ⊆ V, |R| = ⌊tr⌋ ∧

∣∣N̂Vi
(R)

∣∣ ≤ tq
]

(6.13)

≤ k

(
n

tr

)
max
i,R

Pr
[∣∣N̂Vi

(R)
∣∣ ≤ tq

]
(6.14)

≤ kntr max
i,R

Pr

[∣∣N̂Vi
(R)

∣∣ ≤ n1−tδr

4k

]
(6.15)

≤ kntr exp

(
−n

1−tδr

16k

)
(6.16)

≤ exp

(
−n

1−tδr

32k
·
(
2− 2

logn

n1/2

))
(6.17)

≤ e−
√
n . (6.18)

We note that (6.14) is a union bound, (6.15) follows from the definition of q, (6.16) is the mul-

tiplicative form of Chernoff bound (note that the events v ∈ N̂Vi
(R)(v ∈ V \ R) are mutually

independent), (6.17) follows from (6.3), and (6.18) holds for large enough n by (6.2) and the fact

that ε < 1/4 and k < n1/4.

All that is left to prove is that asymptotically almost surely G satisfies property 2 in Defini-

tion 5.3, that is that every (r, q)-neighbour-dense setW ⊆ V is (tr, r, q′, s)-mostly neighbour-dense.

For shortness letP be the event thatG satisfies this property. We wish to show thatPr[¬P] ≤ e−Ω(n),

and it turns out that due to our choice of parameters we can afford to use the crude union bound

over all 2n choices of W .

To be more specific, let Q(W) denote the event that W is (r, q)-neighbour-dense. Given an

(r, q)-neighbour-dense set W ⊆ V we will define a set SW which will be a “candidate witness” of

the fact that W is (tr, r, q′, s)-mostly neighbour-dense. First observe that, since W is (r, q)-neigh-

bour-dense and q′ ≤ q by (6.5), any set R ⊆ V with |R| ≤ tr and
∣∣N̂W (R)

∣∣ ≤ q′ must be such

that |R| > r. We will use a sequence of such sets R and construct SW in a greedy fashion. To this

end, the following definition will be useful. A tuple of sets (R1, . . . , Rm) is said to be r-disjoint if∣∣Ri ∩
(⋃

j<iRj

)∣∣ ≤ r for every i ∈ [m].

Fix an arbitrary ordering of the subsets of V . Define ~RW = (R1, . . . , Rm) to be a maximally

long tuple such that, for every i = 1, . . . , m, the set Ri is the first in the ordering such that |Ri| ≤ tr,∣∣N̂W (Ri)
∣∣ ≤ q′ and

∣∣Ri ∩
(⋃

j<iRj

)∣∣ ≤ r. Note that ~RW is r-disjoint. Now let SW =
⋃

i≤mRi.

Observe that, by maximality of ~RW , any set R ⊆ V with |R| ≤ tr and
∣∣N̂W (R)

∣∣ ≤ q′ must

be such that |R ∩ S| > r. This implies that if |SW | ≤ s then SW witnesses the fact that W is

(tr, r, q′, s)-mostly neighbour-dense. Therefore we have that

Pr[¬P] ≤ Pr[∃W ⊆ V, Q(W) ∧ |SW | > s] . (6.19)

Moreover, letW be the collection of all pairs (W, ~R) such that W ⊆ V , ~R = (R1, . . . , Rℓ) for

ℓ = ⌈s/tr⌉, Rj ⊆ V and 0 < |Rj| ≤ tr for each j ∈ [ℓ], and ~R is r-disjoint. Notice that if there

20

exists an (r, q)-neighbour-dense W such that ~RW = (R1, . . . , Rm) and |SW | > s, then m ≥ ℓ

and (W, (R1, . . . , Rℓ)) ∈ W . Furthermore, by definition of ~RW , for every j ∈ [ℓ] it holds that∣∣N̂W (Rj)
∣∣ ≤ q′. Hence we can conclude that

Pr[¬P] ≤ Pr
[
∃(W, ~R) ∈ W, Q(W) ∧ ∀j ∈ [ℓ],

∣∣N̂W (Rj)
∣∣ ≤ q′

]
(6.20)

≤ 2nntrℓ max
(W,~R)∈W

Pr
[
Q(W) ∧ ∀j ∈ [ℓ],

∣∣N̂W (Rj)
∣∣ ≤ q′

]
(6.21)

≤ 2nns max
(W,~R)∈W

Pr
[
Q(W) ∧ ∀j ∈ [ℓ],

∣∣N̂W (Rj)
∣∣ ≤ q

4
n−tδr

]
, (6.22)

where (6.22) follows for n large enough from the bound in (6.5).

Now fix (W, ~R) ∈ W and let Rd
j (resp. Rc

j) be the subset of Rj disjoint from (resp. con-

tained in)
⋃

j′<j Rj′ . Since |Rc
j | ≤ r by definition, it holds that if W is (r, q)-neighbour-dense then∣∣N̂W (Rc

j)
∣∣ > q. Let F(j) be the event that

∣∣N̂W (Rc
j)
∣∣ > q and

∣∣N̂W (Rj)
∣∣ ≤ q

4
n−tδr . Note that

Pr
[
Q(W) ∧ ∀j ∈ [ℓ],

∣∣N̂W (Rj)
∣∣ ≤ q

4
n−tδr

]
is at most Pr

[
∀j ∈ [ℓ], F(j)

]
. Let F′(j) be the event

that F(j′) holds for all j′ ∈ [j − 1]. We have that

Pr
[
∀j ∈ [ℓ], F(j)

]
=

∏

j∈[ℓ]
Pr

[
F(j)

∣∣ F′(j)
]
. (6.23)

We can consider the factors of the previous product separately and bound each one by

Pr
[
F(j)

∣∣ F′(j)
]

≤
∑

U⊆W
|U |≥q

Pr
[∣∣N̂U(R

d
j)
∣∣ ≤ q

4
n−tδr

∣∣∣ N̂W (Rc
j) = U ∧ F

′(j)
]
· Pr

[
N̂W (Rc

j) = U
∣∣∣ F

′(j)
]

(6.24)

≤
∑

U⊆W
|U |≥q

Pr
[∣∣N̂U(R

d
j)
∣∣ ≤ q

4
n−tδr

]
· Pr

[
N̂W (Rc

j) = U
∣∣∣ F

′(j)
]

(6.25)

≤
∑

U⊆W
|U |≥q

exp

(
−qn

−tδr

16

)
· Pr

[
N̂W (Rc

j) = U
∣∣∣ F

′(j)
]

(6.26)

= exp

(
−qn

−tδr

16

)
·
∑

U⊆W
|U |≥q

Pr
[
N̂W (Rc

j) = U
∣∣∣ F

′(j)
]

(6.27)

≤ exp

(
−qn

−tδr

16

)
. (6.28)

Equation (6.25) follows from the independence of any two events that involve disjoint sets of poten-

tial edges and (6.26) follows from the multiplicative Chernoff bound and the fact that

E
[∣∣N̂U(R

d
j)
∣∣] = |U \Rd

j |n−δ|Rd
j | ≥ (|U | − tr)n−δtr ≥ q

2
n−δtr . (6.29)

21

So, putting everything together, we have that

Pr[¬P] ≤ 2nns exp

(
−qn

−tδrℓ

16

)
≤ e(log 2)n+

√
n logn−(n1+ε)/256 ≤ e−Ω(n) , (6.30)

where the last inequality holds for n large enough, and the second to last inequality follows imme-

diately from the bound in (6.4). This concludes the proof of Theorem 6.1.

7 State-of-the-Art Algorithms for Clique

In this section we describe state-of-the-art algorithms for maximum clique and explain how regular

resolution proofs bound from below the running time of these algorithms.

At the heart of most (if not all) of the state-of-the-art algorithms for maximum clique is a back-

tracking search, which in its simplest form examines all maximal cliques by enlarging a set of

vertices that form a clique and backtracking when it certifies that the current set forms a maximal

clique. A classical example of such a backtracking search is the Bron–Kerbosch [BK73] algorithm

which enumerates all maximal cliques in a graph. This algorithm can be adapted to find a maximum

clique as done in [CP90] improving the running time considerably by using a branch and bound

strategy. At some point in the search tree it becomes clear that the current search-branch will not

lead to a clique larger than the largest one found so far—in such cases the algorithm cuts off the

search and backtracks immediately.

The most successful algorithms in practice are search trees with clever branch and bound strate-

gies. In this section we will discuss the algorithm by Östergård [Öst02] using Russian doll search

and a collection of algorithms that use colour-based branch and bound strategies [Woo97, Fah02,

TS03, TK07, KJ07, TSH+10, ST10, SRJ11, SMRH13, SLB14, SLB+16, TYH+16].

Östergård’s algorithm Östergård’s algorithm [Öst02] is a branch and bound algorithm that uses

Russian doll search as a pruning strategy: it considers smaller subinstances recursively and solves

them in ascending order using previous solutions as upper bounds. This algorithm, which is the

main component of the Cliquer software, is often used in practice and has been available online

since 2003 [NÖ03]. Cliquer is also the software of choice to compute maximum cliques in the

open source mathematical software SageMath [S+17].

The Cliquer(G) algorithm described in Figure 2 is essentially the same as Algorithm 2 in [Öst02].

The algorithm first permutes the vertices of G according to some criteria. Let v1, . . . , vn be the enu-

meration of V (G) induced by said permutation, and Vi = {vi, . . . , vn} for i ∈ [n]. In practice

this permutation has a large impact on the running time of the algorithm, but for our analysis the

knowledge of the specific order is irrelevant.

In the main loop (lines 5–8) subgraphs of G are considered and at each iteration the size of

a maximum clique containing only vertices of Vi is stored in bounds [i]. The algorithm keeps the

best solution (largest clique) found so far in the global variable incumbent which is initially empty.

The array bounds and the flag found are global variables. The current growing clique is stored in

solution and passed as an argument of the subroutine expand together with the current subgraph

H ⊆ G being considered.

22

Algorithm 2 Cliquer(G) algorithm

1 Cliquer(G):
2 begin

3 G← permute(G)
4 incumbent ← ∅
5 for i = n down to 1 do

6 found ← false

7 expand(G[Vi ∩N(vi)], {vi})
8 bounds[i]← |incumbent|
9 return incumbent

10 expand(H, solution):
11 begin

12 while V (H) 6= ∅ do

13 if |solution|+ |V (H)| ≤ |incumbent| then return

14 i← min{j | vj ∈ V (H)}
15 if |solution|+ bounds [i] ≤ |incumbent | then return

16 solution ′ ← solution ∪ {vi}
17 V ′ ← V (H) ∩N(vi)
18 expand(H [V ′], solution ′)
19 if found = true then return

20 H ← H \ {vi}
21 if |solution ′| > |incumbent | then

22 incumbent ← solution ′

23 found ← true

24 return

The main subroutine expand recursively goes through all vertices of H from smallest to largest

index. First note that if the size of the current growing clique plus |H| is not larger than the current

maximum clique (line 13) then this branch can be cut. Moreover, if vi is the smallest-index vertex

in H then V (H) ⊆ Vi and bounds [i] is an upper bound on the size of a maximum clique in H .

This implies that this branch can be cut if the size of the current growing clique plus bounds[i] is

not larger than the current maximum clique (line 15). If it is larger, the algorithm branches on the

vertex vi.
First vi is taken to be part of the solution: it is added to (a copy of) the current growing solu-

tion, (a copy of) the graph is updated to contain only neighbours of vi and a recursive call is made

(lines 16–18). If the recursive call finds a clique larger than the current largest clique, it sets the flag

found to true. This allows the algorithm can return to the main routine (line 8) since a maximum

clique containing only vertices of Vi can be at most one unit larger than a maximum clique contain-

ing only vertices of Vi+1. If no larger clique was found, the algorithm then proceeds to the opposite

23

branch choice, that is, taking vertex vi to not be in the solution (line 20) and considering the next

vertex in the ordering. If V (H) is empty and a larger clique has been found, the best solution so far

is updated and the flag found is set to true (lines 22–23).

We now argue that the running time of the Cliquer(G) algorithm is bounded from below by

the size of a regular resolution refutation of Cliqueblock(G, k) up to a constant factor. First note that

a straightforward modification of the Cliquer(G) algorithm gives an algorithm that determines

whether G contains a block-respecting k-clique.

Given a graph G that does not contain a block-respecting k-clique, the last call of the subroutine

expand in the main loop (lines 5–8, when i is set to 1) can be represented by an ordered decision

tree with labelled leafs. A decision tree is said to be ordered if there exists a linear ordering of the

variables such that if x is queried before y then x ≺ y. In our setting, the order is determined by

the permutation of the vertices, and without loss of generality we assume vi ≺ vj if i < j. For

each leaf, if R is the set of vertices identified as clique members by the branch leading to this leaf,

then the leaf is labelled either by a pair (u, v) such that u, v ∈ R and there is no edge between u
and v or by an index ℓ ∈ [k] such that all vertices in the ℓth block are outside the clique, or by a

vertex vi such that i = min{j | vj ∈ N(R)} and the largest clique containing only vertices of Vi

has size at most k−|R|−1. For each vertex vi that labels some leaf, we construct the decision tree

corresponding to the ith call of the subroutine expand.

In order to weave these decision trees into a read-once branching program, at each leaf labelled

vi we query all non yet queried vertices vj such that j < i and vj is in the same block as vi. Let

Bi denote the set of vertices. Observe that taking any vertex in Bi to be in the clique yields an

immediate contradiction since Bi ∩ N(R) = ∅ by definition of i. Moreover note that the branch

leading to the leaf where all of Bi is taken to be outside the clique does not contain any query to

vertices in Vi. We can therefore identify this leaf with the root of the decision tree corresponding to

vi and still maintain regularity. After repeating this procedure at every leaf labelled by some vertex,

only leafs labelled by indices ℓ ∈ [k] and by pairs (u, v) remain, which have a direct correspondence

to falsified clauses of Cliqueblock(G, k). Therefore, the directed graph obtained by this process

corresponds to a read-once branching program that solves the falsified clause search problem on

Cliqueblock(G, k) and the bound on the running time follows immediately.

Colour-based branch and bound algorithms We consider a class of algorithms which are ar-

guably the most successful in practice. An extended survey together with a computational analysis

of algorithms published until 2012 can be found in [Pro12] and an overview of algorithms reported

since then in [McC17]. These algorithms are branch and bound algorithms that use colouring as a

bounding—and often also as a branching—strategy. The basic idea is that if a graph can be coloured

with ℓ colours then it does not contain a clique larger than ℓ.
The MaxClique(G) algorithm described in Figure 3, a generalized version of Algorithm 2.1

in [McC17], is a basic maximum clique algorithm which uses a colour-based branch and bound

strategy. The algorithm keeps the best solution (largest clique) found so far in the global variable

incumbent which is initially empty. The current clique is stored in solution and passed as an

argument of the subroutine expand together with the current subgraph H ⊆ G being considered.

The subroutine colourOrder(H) (line 8) returns an ordering of the vertices inH , say v1, v2, . . . , vn,

24

Algorithm 3 MaxClique(G) algorithm

1 MaxClique(G):
2 begin

3 global incumbent ← ∅
4 expand(G, ∅)
5 return incumbent

6 expand(H, solution):
7 begin

8 (order , bounds)← colourOrder(H)
9 while V (H) 6= ∅ do

10 i← |V (H)|
11 if |solution|+ bounds [i] ≤ |incumbent | then return

12 v ← order [i]
13 solution ′ ← solution ∪ {v}
14 V ′ ← V (H) ∩N(v)
15 expand(H [V ′], solution ′)
16 H ← H \ {v}
17 if |solution ′| > |incumbent | then incumbent ← solution ′

18 return

and for every i ∈ [n] an upper bound on the number of colours needed to colour the graph induced

by vertices v1 to vi.
The vertices are then considered in reverse order. If the vertex v is being considered and the size

of the current growing clique plus the (upper bound on the) number of colours needed to colour the

remaining graph is not larger than the current maximum clique (line 11) then this branch can be cut.

If it is larger, the algorithm branches on the vertex v. First v is taken to be part of the solution: v is

added to (a copy of) the current growing solution, (a copy of) the graph is updated to contain only

neighbours of v and a recursive call is made (lines 13–15). If the recursive call finds a clique larger

than the current largest clique, the best solution so far is updated (line 17). The algorithm proceeds

to the opposite branch choice, that is, considering vertex v not in the solution (line 16). Returning

to the loop the algorithm continues to consider the next vertex in the ordering.

It was reported in [CZ12] that it is possible to capture the algorithms for solving the maximum

clique problem in [CP90, Fah02, TS03, TK07, KJ07, TSH+10] in a same framework. The gen-

eral algorithm they present is an iterative version of the MaxClique(G) algorithm. We observe

that MaxClique(G) captures also the more recent algorithms in [ST10, SRJ11, SMRH13, SLB14,

SLB+16, TYH+16]. The differences in these algorithms reside in the colouring procedure and

in how the graph operations are implemented (see [Pro12, McC17] for details). For our purpose,

that is, in order to show that the running time of these algorithms can be bounded from below by

the length of the shortest regular resolution refutation of the k-clique formula, we assume that the

colouring algorithm and the graph operations take constant time and prove the lower bound for this

25

general framework. Moreover, we can assume that optimal colouring bounds and optimal ordering

of vertices are given.

We now argue that the running time of the MaxClique(G) algorithm is bounded from below by

the size of a regular resolution refutation of Cliqueblock(G, k) up to a multiplicative factor of 2knO(1).

We first note that a straightforward modification of the MaxClique(G) algorithm gives an algorithm,

which we refer to as Clique(G, k), that determines whether G contains a k-clique. Given a graph

G that does not contain a k-clique, an execution of Clique(G, k) can be represented by a search

tree with leafs labelled by a subgraph H ⊆ G of potential clique-members and a number q such that

the branch leading to this leaf has identified k−q clique members, has not queried any vertex of H ,

and H is (q−1)-colourable. Note that a read-once branching program can simulate this search tree

and, by Proposition 3.3 and the equivalence between read-once branching programs and regular

resolution, at each leaf establish that H does not contain a q-clique in size at most 2q · q2 · |V (H)|2.
The bound on the running time follows directly.

Observe that establishing that H does not contain a q-clique is done in a read-once fashion by

querying only vertices of H . Since the vertices of H were not queried earlier on this branch, the

whole branching program is read-once.

8 Concluding Remarks

In this paper we prove optimal average-case lower bounds for regular resolution proofs certifying

k-clique-freeness of Erdős-Rényi graphs not containing k-cliques. These lower bounds are also

strong enough to apply for several state-of-the-art clique algorithms used in practice.

The most immediate and compelling question arising from this work is whether the lower

bounds for regular resolution can be strengthened to hold also for general resolution. A closer

study of our proof reveals that there are several steps that rely on regularity. However, there is no

connection per se between regular resolution and the abstract combinatorial property of graphs that

we show to be sufficient to imply regular resolution lower bounds. Thus, it is tempting to speculate

that this property, or perhaps some modification of it, might be sufficient to obtain lower bounds

also for general resolution. If so, a natural next step would be to try to extend the lower bound

further to the polynomial calculus proof system capturing Gröbner basis calculations. It is worth

mentioning that proving a general resolution lower bound of nΩ(k) for the k-clique formula would

have interesting consequences in parameterized proof complexity [DMS11].

Another intriguing question is whether the lower bounds we obtain asymptotically almost surely

for random graphs can also be shown to hold deterministically under the weaker assumption that

the graph has certain pseudorandom properties. Specifically, is it possible to get an nΩ(log n) length

lower bound for the class of Ramsey graphs? A graph onn vertices is called Ramsey if it has no set of

⌈2 log2 n⌉ vertices forming a clique or an independent set. It is known that for sufficiently large n a

random graph sampled from G (n, 1/2) is Ramsey with high probability. Is it true that for a Ramsey

graph G on n vertices the formula Clique(G, ⌈2 log2 n⌉) requires (regular) resolution refutations of

length nΩ(logn)? The main difficulty towards adapting our argument to this setting is that Ramsey

graphs are, in some sense, less well structured than random graphs. For example, a random graph

plus a constant number of isolated vertices is, with high probability, still a Ramsey graph, but it

26

no longer satisfies the first property of clique-denseness (Definition 5.3). This particular problem

can be circumvented using a result from [PR99, Theorem 1]—as was done in [LPRT17] to obtain a

lower bound for tree-like resolution—but proving that a Ramsey graph satisfies the second property

of clique-denseness, or some suitable version of it, seems significantly more challenging.

Acknowledgements This work has been a long journey, and different subsets of the authors want

to acknowledge fruitful and enlightening discussions with different subsets from the following list

of colleagues: Christoph Berkholz, Olaf Beyersdorff, Nicola Galesi, Ciaran McCreesh, Toni Pitassi,

Pavel Pudlák, Ben Rossman, Navid Talebanfard, and Neil Thapen. A special thanks to Shuo Pang

for having pointed out an inaccuracy in the probabilistic argument in Section 6 and having suggested

a fix.

The first, second, and fourth authors were supported by the European Research Council under

the European Union’s Horizon 2020 Research and Innovation Programme / ERC grant agreement

no. 648276 AUTAR.

The third and fifth authors were supported by the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no. 279611

as well as by Swedish Research Council grants 621-2012-5645 and 2016-00782, and the second

author did part of this work while at KTH Royal Institute of Technology supported by the same

grants. The last author was supported by the Russian Foundation for Basic Research.

References

[ABdR+18] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob

Nordström, and Alexander Razborov. Clique is hard on average for regular resolu-

tion. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing

(STOC ’18), pages 866–877, June 2018.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique

in a random graph. Random Structures and Algorithms, 13(3-4):457–466, 1998.

[BBI16] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:

Superpolynomial lower bounds for superlinear space. SIAM Journal on Computing,

45(4):1612–1645, August 2016. Preliminary version in STOC ’12.

[BE76] Béla Bollobás and Paul Erdős. Cliques in random graphs. Mathematical Proceedings

of the Cambridge Philosophical Society, 80(3):419–427, November 1976.

[BGL13] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complex-

ity of DPLL search procedures. ACM Transactions on Computational Logic,

14(3):20:1–20:21, August 2013. Preliminary version in SAT ’11.

[BGLR12] Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander A. Razborov. Pa-

rameterized bounded-depth Frege is not optimal. ACM Transactions on Computation

Theory, 4(3):7:1–7:16, September 2012. Preliminary version in ICALP ’11.

27

[BIS07] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The resolution complexity

of independent sets and vertex covers in random graphs. Computational Complexity,

16(3):245–297, October 2007. Preliminary version in CCC ’01.

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected

graph. Communications of the ACM, 16(9):575–577, September 1973.

[BP96] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds.

In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer

Science (FOCS ’96), pages 274–282, October 1996.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve

real-world SAT instances. In Proceedings of the 14th National Conference on Artifi-

cial Intelligence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.

Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

[CHKX04] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear FPT reductions and

computational lower bounds. In Proceedings of the 36th Annual ACM Symposium on

Theory of Computing (STOC ’04), pages 212–221, June 2004.

[CP90] Randy Carraghan and Panos M Pardalos. An exact algorithm for the maximum clique

problem. Operations Research Letters, 9(6):375–382, November 1990.

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof

systems. Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary version

in STOC ’74.

[CZ12] Renato Carmo and Alexandre Züge. Branch and bound algorithms for the maximum

clique problem under a unified framework. Journal of the Brazilian Computer Society,

18(2):137–151, June 2012.

[DF95] Rodney Downey and Michael R. Fellows. Fixed-parameter tractability and complete-

ness II: Completeness for W[1]. Theoretical Computer Science A, 141(1–2):109–131,

April 1995.

[DGGM20] Stefan Dantchev, Nicola Galesi, Abdul Ghani, and Barnaby Martin. Proof complexity

and the binary encoding of combinatorial principles. Technical Report 2008.02138,

arXiv.org, 2020. Preliminary versions of these results appeared in [DGM19] and

[DGM20].

[DGM19] Stefan Dantchev, Nicola Galesi, and Barnaby Martin. Resolution and the binary en-

coding of combinatorial principles. In Proceedings of the 34th Computational Com-

plexity Conference (CCC ’19), volume 137 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 6:1–6:25, July 2019.

28

[DGM20] Stefan Dantchev, Abdul Ghani, and Barnaby Martin. Sherali-adams and the binary

encoding of combinatorial principles. In Proceedings of the 14th Latin American

Symposium on Theoretical Informatics (LATIN ’20), 2020. To appear.

[DMS11] Stefan Dantchev, Barnaby Martin, and Stefan Szeider. Parameterized proof complex-

ity. Computational Complexity, 20(1):51–85, March 2011. Preliminary version in

FOCS ’07.

[Fah02] Torsten Fahle. Simple and fast: Improving a branch-and-bound algorithm for maxi-

mum clique. In Proceedings of the 10th Annual European Symposium on Algorithms

(ESA ’02), volume 2461 of Lecture Notes in Computer Science, pages 485–498, 2002.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,

39(2-3):297–308, August 1985.

[Hås99] Johan Håstad. Clique is hard to approximate within n1−ǫ. Acta Mathematica,

182:105–142, 1999. Preliminary version in FOCS ’96.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal

of Computer and System Sciences, 62(2):367–375, March 2001. Preliminary version

in CCC ’99.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-

puter Computations, The IBM Research Symposia Series, pages 85–103. Springer,

1972.

[Kar76] Richard M. Karp. The probabilistic analysis of some combinatorial search algorithms.

In Algorithms and Complexity: New Directions and Recent Results, pages 1–19. Aca-

demic Press, New York, 1976.

[KJ07] Janez Konc and Dušanka Janežič. An improved branch and bound algorithm for the

maximum clique problem. MATCH Communications in Mathematical and Computer

Chemistry, 58:569–590, 2007.

[Knu94] Donald E. Knuth. The sandwich theorem. The Electronic Journal of Combinatorics,

1(A1):1–48, 1994.

[Kra95] Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, New York, 1995.

[Kra97] Jan Krajı́ček. Interpolation theorems, lower bounds for proof systems, and indepen-

dence results for bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, June

1997.

[Kuč95] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied

Mathematics, 57(2-3):193–212, February 1995.

29

[Lau18] Massimo Lauria. Cliques enumeration and tree-like resolution proofs. Information

Processing Letters, 135:62–67, July 2018.

[Lov79] László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information

theory, 25(1):1–7, January 1979.

[LPRT17] Massimo Lauria, Pavel Pudlák, Vojtěch Rödl, and Neil Thapen. The complexity of

proving that a graph is Ramsey. Combinatorica, 37(2):253–268, April 2017. Prelim-

inary version in ICALP ’13.

[McC17] Ciaran McCreesh. Solving Hard Subgraph Problems in Parallel. PhD thesis, Univer-

sity of Glasgow, 2017.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design

Automation Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-

sitional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

Preliminary version in ICCAD ’96.

[NÖ03] Sampo Niskanen and Patric RJ Östergård. Cliquer User’s Guide, Version 1.0. Tech-

nical Report T48, Communications Laboratory, Helsinki University of Technology,

Espoo, Finland, 2003.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.

Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985.

[Öst02] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete

Applied Mathematics, 120(1–3):197–207, August 2002.

[Pan19] Shuo Pang. Large clique is hard on average for resolution. Technical Report TR19-068,

Electronic Colloquium on Computational Complexity (ECCC), May 2019.

[PR99] Hans Jürgen Prömel and Vojtěch Rödl. Non-Ramsey graphs are c logn-universal.

Journal of Combinatorial Theory, Series A, 88(2):379–384, November 1999.

[Pro12] Patrick Prosser. Exact algorithms for maximum clique: A computational study. Algo-

rithms, 5(4):545–587, November 2012.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Ros08] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings

of the 40th Annual ACM Symposium on Theory of Computing (STOC ’08), pages

721–730, May 2008.

30

[Ros10] Benjamin Rossman. Average-Case Complexity of Detecting Cliques. PhD thesis,

Masschussets Institute of Technology, 2010.

[Ros14] Benjamin Rossman. The monotone complexity of k-clique on random graphs.

SIAM Journal on Computing, 43(1):256–279, January 2014. Preliminary version in

FOCS ’10.

[RWY02] Alexander Razborov, Avi Wigderson, and Andrew Yao. Read-once branching pro-

grams, rectangular proofs of the pigeonhole principle and the transversal calculus.

Combinatorica, 22(4):555–574, October 2002. Preliminary version in STOC ’97.

[S+17] W. A. Stein et al. Sage Mathematics Software (Version 8.1). The Sage Development

Team, 2017.

[SLB14] Pablo San Segundo, Alvaro Lopez, and Mikhail Batsyn. Initial sorting of vertices

in the maximum clique problem reviewed. In Proceedings of the 8th International

Conference on Learning and Intelligent Optimization (LION ’14), Selected Revised

Papers, volume 8426 of Lecture Notes in Computer Science, pages 111–120. Springer,

2014.

[SLB+16] Pablo San Segundo, Alvaro Lopez, Mikhail Batsyn, Alexey Nikolaev, and Panos M.

Pardalos. Improved initial vertex ordering for exact maximum clique search. Applied

Intelligence, 45(3):868–880, October 2016.

[SMRH13] Pablo San Segundo, Fernando Matia, Diego Rodrı́guez-Losada, and Miguel Hernando.

An improved bit parallel exact maximum clique algorithm. Optimization Letters,

7(3):467–479, March 2013.

[SRJ11] Pablo San Segundo, Diego Rodrı́guez-Losada, and Agustı́n Jiménez. An exact bit-

parallel algorithm for the maximum clique problem. Computers and Operations Re-

search, 38(2):571–581, February 2011.

[ST10] Pablo San Segundo and Cristóbal Tapia. A new implicit branching strategy for exact

maximum clique. In Proceedings of the 22nd IEEE International Conference on Tools

with Artificial Intelligence (ICTAI ’10), volume 1, pages 352–357, 2010.

[TK07] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound algorithm for

finding a maximum clique with computational experiments. Journal of Global Opti-

mization, 37(1):95–111, January 2007.

[TS03] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for find-

ing a maximum clique. In Proceedings of the 4th International Conference on Dis-

crete Mathematics and Theoretical Computer Science (DMTCS ’03), volume 3, pages

278–289, 2003.

31

[TSH+10] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakat-

suki. A simple and faster branch-and-bound algorithm for finding a maximum clique.

In Proceedings of the 4th International Workshop on Algorithms and Computation

(WALCOM ’10), volume 5942 of Lecture Notes in Computer Science, pages 191–203.

Springer, 2010.

[TYH+16] Etsuji Tomita, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro Ito, and Mitsuo

Wakatsuki. A much faster branch-and-bound algorithm for finding a maximum

clique. In Proceedings of the 10th International Workshop on Frontiers in Algorith-

mics (FAW ’16), volume 9711 of Lecture Notes in Computer Science, pages 215–226.

Springer, June 2016.

[Vas09] Virginia Vassilevska. Efficient algorithms for clique problems. Information Process-

ing Letters, 109(4):254–257, January 2009.

[Woo97] David R Wood. An algorithm for finding a maximum clique in a graph. Operations

Research Letters, 21(5):211–217, January 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory of Computing, 3(6):103–128, August 2007. Prelimi-

nary version in STOC ’06.

32

	1 Introduction
	2 Preliminaries
	3 Graphs That Are Easy for Regular Resolution
	4 Random Graphs Are Hard for Regular Resolution
	5 Clique-Denseness Implies Hardness for Regular Resolution
	6 Random Graphs Are Almost Surely Clique-Dense
	7 State-of-the-Art Algorithms for Clique
	8 Concluding Remarks

