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Abstract

We give upper bounds for a positional game – in the sense of Beck – based on the
Paris-Harrington Theorem for bi-colorings of graphs and uniform hypergraphs of arbitrary
dimension. The bounds for the positional game show a striking difference when compared to
the bounds for the combinatorial principle itself. Our results confirm a phenomenon already
observed by Beck and others: the upper bounds for the game version of a combinatorial
principle are drastically smaller than the upper bounds for the principle itself. In the case of
Paris-Harrington games the difference is qualitatively very striking. For example, the bounds
for the game on 3-uniform hypergraphs are a fixed stack of exponentials while the bounds
for the corresponding combinatorial principle are known to be at least Ackermannian. For
higher dimensions, the combinatorial Paris-Harrington numbers are known to be cofinal in
the Schwichtenberg-Wainer Hiearchy of fast-growing functions up to the ordinal ε0, while we
show that the game Paris-Harrington numbers are bounded by fixed stacks of exponentials.

1 Introduction and Motivation

We are motivated by the following phenomenon, observed in Combinatorial Game Theory (see,
e.g., [2, 3, 4, 18]).

The work of Beck [2, 3, 4] has shown that in the case of Ramsey Theorem and of Van der
Waerden Theorem the game functions are drastically, qualitatively slower than the witnessing
functions of the corresponding combinatorial theorems. This has been confirmed by Nešetřil
and Valla [18] for some Ramsey classes of relational structures and seems to be a general
phenomenon. Intuitively this is not surprising since in the game version the two players explore
a small subtree of the tree of all colorings.

We give a new example of this phenomenon by introducing Paris-Harrington positional
games on graphs and hypergraphs of arbitrary dimension and proving upper bounds for the
associated witnessing functions.1

The Paris-Harrington Theorem [12] for d-uniform hypergraphs (we henceforth use ‘hyper-
graph’ for ‘uniform hypergraph’ for the sake of brevity) says that, for every k ≥ d, there exists

1The results of the present paper where presented by the first author at the Memorial Conference in Honour of
H. Kotlarski and Z. Ratajczyk, Model Theory and Proof Theory of Arithmetic, Banach Center, Bedlewo, Poland,
22-28 July 2012.
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a number N so large that any coloring of the complete d-hypergraph on vertex set [k,N ] ad-
mits a monochromatic sub-hypergraph on a set V of vertices with the following property: the
cardinality of V is not smaller than the minimum element of V . The general version (with quan-
tification on all dimensions d ≥ 2) of this – seemingly innocent – variant of Ramsey Theorem
is the most famous example of a natural mathematical finitary theorem that cannot be proved
in strong theories like Peano Arithmetic, as shown by Harrington and Paris in [12]. This was
in fact the original motivation for its study. For hypergraphs of fixed dimension the witnessing
functions for the Paris-Harrington Theorem grow extremely fast. E.g., for 3-hypergraphs, they
grow as the Ackermann function, while for higher dimensions the bounds are cofinal in the
Schwichtenberg-Wainer Hiearchy of fast-growing functions up to ε0 (see [13]).

We show that the game functions and the witnessing functions for the truth of the Paris-
Harrington combinatorial principle are dramatically far apart. E.g., in the case of 3-hypergraphs,
the game function is asymptotically bounded by a fixed stack of exponentials while the combina-
torial principle has Ackermannian lower bounds. An analogous dichotomy holds for hypergraphs
of dimensions larger than three.

The problem we solve was proposed as an open problem by Tomáš Valla in his doctoral
thesis, where it was conjectured to have a positive solution ([24], pp. 106-107).2 This conjecture
was based on a twofold analogy: on the one hand the Paris-Harrington principle can be related –
using a proof of it by Loebl and Nešetřil [15] – to another early example of a finitary statement
independent from Peano Arithmetic, the so-called Hydra Game by Kirby and Paris [14]; on
the other hand, a game version of the Paris-Harrington principle can be related to a modified
version of the Hydra Game studied by Loebl and Matoušek [16], for which both long strategies
(i.e., strategies whose termination is unprovable in Peano Arithmetic) and short strategies (i.e.,
strategies with primitive-recursive bounds on their length) can be designed. Both proposed
analogies are interesting and would deserve further inquiry. They could lead to a different
proof of results comparable to those presented in this paper, yielding a dichotomy between
primitive recursive game bounds vs. the fast-growing bounds on the Paris-Harrington principle.
The methods used in the present paper, however, are completely different and yield elementary
game bounds.

Combinatorial games on graphs have interesting and deep connections with Automata The-
ory and Complexity Theory (parity games, reachability games, etc. See [11] for an overview).
For example, the computational complexity of Ramsey games has been studied and proved to
be PSPACE-complete by Slany [21]. We plan to investigate in future work these aspects of
the games introduced in the present paper.

2 Ramsey and Paris-Harrington games

We introduce the combinatorial principles and the combinatorial games of interest for the
present paper, along with the known corresponding bounds. We recall that when we con-
sider some edge-coloring of an hypergraph, a set of vertices U is called homogeneous when
all hyperedges contained in U have the same color. We consider the following formulation of
Ramsey Theorem for bi-colorings of hypergraphs.

Theorem 1. (Ramsey Theorem, [20]) For every d ≥ 2 for every k ≥ d there exists a number
rd(k) which is the smallest number n such that for any edge-coloring of a complete d-hypergraph
of n vertices in two colors, there is an homogeneous set of vertices of size k.

In this paper we are mainly concerned with Paris-Harrington principles. The general Paris-
Harrington Theorem (for arbitrary colorings of hypergraphs) was introduced in [12] as the first

2We thank one of the reviewers for pointing out this reference to us.
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example of a mathematically natural witness of the incompleteness phenomenon for formal
theories of arithmetic. The general version is known to be unprovable in first-order Peano
Arithmetic [12], and the same holds if one restricts consideration to colorings with two colors [15].

In order to state the Paris-Harrington Theorem we need the following key definition. A set
of integer numbers is called relatively large (or just large, for brevity) if its cardinality is at least
as big as its minimum element. For example the set {3, 6, 9} is large, while {5, 7, 11, 12} is not.
We denote the set of integers between a and b (included) by [a, b]. For a set S we denote the
family of subsets of size d of S by

(
S
d

)
. The Paris Harrington Theorem is as follows.

Theorem 2. (Paris-Harrington Theorem [12]) For every d ≥ 2, for every k ≥ d, there exists
a number Rd(k) which is the smallest number n such that for any coloring of the elements of([k,n]

d

)
in two colors there exists a set H ⊆ [k, n] which is homogeneous and large.

Obviously, the conclusion in the above theorem is true for every number n ≥ Rd(k). Observe
that Rd(k) ≥ rd(k) + k − 1 always holds.

We briefly recall the known bounds for the Ramsey and Paris-Harrington principles of
interest for the present paper.

Diagonal Ramsey numbers (in our notation rd(k)) are an active topic of research, rich in
difficult open problems. For the sake of this paper, it is enough to recall the following classical
bounds. For graphs the following bounds are due to Erdős [7].

2k/2 < r2(k) ≤ 22k.

The currently best upper bound is due to Conlon [5]. For d ≥ 3 the following bounds are
known [8]:

2k
2/6 < r3(k) < 22

4n
, and 22

k2/6
< r4(k) < 22

24k

.

Let towerd(k) denote the d-th iteration of the exponential function in base 2, i.e., tower0(k) = k
and towerd+1(k) = 2towerd(k). In general, the following holds.

towerd−2(k
2/6) < rd(k) < towerd−1(4k). (1)

The currently best bounds are due to Conlon, Fox, and Sudakov [6].
Now we recall the known bounds on the Paris-Harrington principle. For bi-colorings of

graphs the Paris-Harrington principle is only slightly stronger than Ramsey Theorem and is
known to have double exponential upper bounds. The following bounds have been established
by Erdős and Mills [10, 17]. There exist constants α, β,N > 0 such that for all k ≥ N

k2
αk
< R(k) < k2

2βk
. (2)

As observed in [10], the results on the asymptotics of the Paris-Harrington numbers for colorings
of graphs in c > 2 colors imply that R3(k) grows essentially as fast as Ackermann’s function.
In particular it has no primitive recursive upper bound. The same is true of the function for
edge-colorings of graphs as a function of the number of colors rather than only of k.

To describe the bounds on Paris-Harrington numbers for d > 3 one needs to introduce a
hierarchy of fast-growing functions indexed by notations for ordinals below ε0 (the smallest fix-
point of the function α 7→ ωα). The hierarchy is called the Schwichtenberg-Wainer Hierarchy
and commonly denoted by (Fα)α<ε0 . Since we do not need the details of this hierarchy in the
present paper, we skip them and refer the reader to, e.g., [13]. For the sake of comparison with
our results, the following highlights are sufficient. The backbone of the hierarchy is constituted
by the functions Fωd , where ω1 = ω and ωd+1 = ωωd . First, Fω is a variant of the Ackermann
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function. In general, the following fundamental result from Proof Theory gives a hint of the
growth-rate of the functions of the hierarchy (see [22] for a classical textbook treatment). For
d ≥ 1, the function Fωd eventually dominates the (computable) functions that have a Σ1-
definition and a proof of termination in the system IΣd obtained from Peano Arithmetic by
restricting the induction axiom to Σd-formulas. On the other hand, we know that Fωd is a
lower bound on the witnessing function for the Paris-Harrington principle for colorings of d+ 2
hypergraphs in two colors (see [13]). Thus, the witnessing functions for the Paris-Harrington
principle are extremely fast-growing for dimensions larger than two.

We now discuss one way in which Ramsey and Paris-Harrington theorems are naturally
turned into positional two-players games (other natural ways possible; see the Conclusion section
for an example).

Beck [2] defined the following game version of Ramsey Theorem for hypergraphs of dimension
d ≥ 2. The Ramsey (d, k)-game (denoted by RAM(d, k,N)) with dimension d and target k is
played on a board consisting in the complete d-hypergraph on N vertices. The two players,
Maker (female) and Breaker (male), take moves in turn, starting with Maker. Each player at
each move can color a hyperedge in his/her own color. The goal of Maker is to color a complete
sub-hypergraph of size k in her own color. The goal of Breaker is to avoid that this happens.

A simple (but non-constructive) strategy stealing argument shows that Maker has a winning
strategy if N is larger than the Ramsey number r2(k) (see, e.g., [3]). Let r̂d(k) denote the
smallest number such that Maker has a winning strategy in game RAM(d, k, r̂d(k)). We call
r̂d(k) the game number for the Ramsey (d, k)-game. In his fundamental studies on positional
games Beck [2, 3, 4] has proved the following upper bounds on the game numbers for Ramsey
games of arbitrary dimension.

Theorem 3. (Beck [3], Pekeč [19])

1. If N ≤ 2k/2 then Breaker has a winning strategy for the game RAM(2, k,N),

2. if N ≥ 2k+2 then Maker has a winning strategy for the game RAM(2, k,N).

Theorem 4. (Beck, [3]) For every d ≥ 3 there are positive constants cd and c′d such that

1. If N ≤ 2cd·k
d−1

then Breaker has a winning strategy in the game RAM(d, k,N), and

2. if N ≥ 2c
′
d·k

d
then Maker has a winning strategy in the game RAM(d, k,N).

The Paris-Harrington Theorem is naturally turned into a positional combinatorial two-
players game in a similar way. The Paris-Harrington (d, k)-game (denoted by
PH(k,N)) is played on a board consisting of a complete hypergraph with vertex set [k,N ].
Maker and Breaker are as in the Ramsey Game. The goal of Maker is now to color a complete
relatively large sub-hypergraph in her own color.

Let R̂d(k) denote the smallest number such that Maker has a winning strategy in game
PH(d, k, R̂d(k)). We call R̂d(k) the game number for the Paris-Harrington (d, k)-game.

As in the case of Ramsey games, a standard strategy stealing argument shows that Maker
has a winning strategy in PH(d, k,N) if N is larger than the Paris-Harrington number Rd(k).

3 Time to meet the Maker

We prove upper bounds for the Paris-Harrington (d, k)-games for every d ≥ 2 and k ≥ d. We
first discuss the case of graphs and then the case of hypergraphs of dimension d ≥ 3.
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3.1 The case of graphs

We consider the Paris-Harrington (2, k)-game, for k ≥ 2. Using a suitable (greedy-type) strategy
for the Maker we reduce the problem to the problem of lower bounding the largest independent
set in a graph on n vertices and n edges. We first discuss the latter problem.

It is well known that a simple graph with degree at most d is (d+1)-colorable in the following
way: color all vertices one by one in an arbitrary order, choosing at each step a color which does
not appear in the vertex’s neighborhood. Each vertex has at most d neighbors, so d+ 1 colors
are always sufficient. We want to discuss a similar result for graphs of average degree d ≥ 0.
Notice that such graphs could have polynomial size cliques even if d is constant, thus a small
coloring is impossible. We decide then to relax the request. A (d + 1)-colorable graph with n
vertices has an independent set of size at least n

d+1 (hint: pick the largest color class). We first
observe that such a big independent set can be guaranteed even if d is just the average degree.
This is guaranteed by the following Lemma, which amounts to one half of Turán’s Theorem
[23]. The short proof we include below is from Alon and Spencer’s The Probabilistic Method
([1] Theorem 3.2.1) and is probably due to Ravi Boppana.

Lemma 1 (Turán [23]). Any graph G with n vertices and average degree d has an independent
set of size n

d+1 .

Proof. We compute an independent set by the following randomized greedy procedure. We sort
the vertices in a random order. We start with an empty S, and we scan all vertices according
to the chosen order. Each time we meet a vertex with no neighbors in S we put it in S, and
we carry on with the scan. It is clear that S is an independent set. Let us define the random
variable Xv which is 1 if v ∈ S and 0 otherwise. Then

|S| =
∑

v∈V (G)

Xv.

We denote the degree of a vertex v as dv. We now focus on the expected value EXv. A vertex
v is always chosen to be in S if it occurs before its neighbors in the random order. Then
EXv ≥ 1

dv+1 . Thus we get

E|S| ≥
∑

v∈V (G)

1

dv + 1
≥ n2∑

v∈V (G) (dv + 1)
=

n

d+ 1
,

where the first inequality comes from the linearity of expectation and the second inequality
comes by setting pi = 1

n and xi = n
dvi+1 in the following formulation of the Harmonic Mean-

Arithmetic Mean inequality, using some arbitrary enumeration {v1, . . . , vn} of V (G).

Proposition 1. (Harmonic Mean-Arithmetic Mean inequality) For non negative p1 . . . pn such
that p1 + · · ·+ pn = 1 we get that

1
p1
x1

+ p2
x2

+ · · ·+ pn
xn

≤ p1x1 + p2x2 + · · ·+ pnxn.

Since the expected value of S has size at least n
d+1 there exists an ordering of the vertices

for which an independent set of that size is achieved.

Corollary 1. A graph with n vertices and n edges has an independent set of size at least dn3 e.

Proof. Since there are n edges, it follows that the average degree is two. The statement follows
from the previous theorem and from the integrality of the set size.
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Note that the previous statement is tight for any n: if n = 3m + r, with r ∈ {0, 1, 2},
consider a graph made of m triangles, with a path of r edges joined to an arbitrary vertex in an
arbitrary triangle. This graph contains exactly n edges. If r = 0 then the largest independent
sets have size m, otherwise they have size m+ 1.

Theorem 5. If N ≥ k − 4 + 6 · r̂2(k − 1), then Maker has a winning strategy in the game
PH(2, k,N).

Proof. Without loss of generality we assume N = k − 4 + 6r̂2(k − 1). The Maker strategy is
divided in two phases. In the first one she greedily connects 3 · r̂2(k−1)−2 vertices in [k+1, N ]
to vertex k: her first move is {k, k + 1}, and at each subsequent step Maker picks the smallest
v such that {k, v} has not been yet taken by the Breaker. The value of N ensures that Maker
can play this move at least 3 · r̂2(k − 1)− 2 times. After that many rounds, Maker has colored
3 · r̂2(k − 1)− 2 edges of the form (k, v) for v ∈ [k + 1, N ].

Let us call U such a set of vertices. The game has lasted 3 · r̂2(k− 1)− 2 rounds so far, thus
at most 3 · r̂2(k − 1)− 2 edges among vertices of U have been captured by Breaker (we remark
that the last move of the previous phase was made by Breaker). Corollary 1 implies that there
exists W ⊆ U of size ⌈

U

3

⌉
≥
⌈

3 · r̂2(k − 1)− 2

3

⌉
= r̂2(k − 1),

such that no edges touching W have been captured by either player.
The next move is for Maker, who now starts the second phase of the strategy. From now on

Maker plays a strategy for winning the game RAM(2, k, |W |) on the set of vertices W . Such a
strategy exists since |W | ≥ r̂2(k − 1), and since no pair in W has been touched so far.

At the end of the second phase Maker wins the game on W , and thus has captured a clique
C ⊆W of size k− 1. All vertices in W have been connected to k by Maker because of the first
phase of the strategy: it follows that C ∪ {k} is a relatively large clique since it has size k and
its minimum element is k.

From the bounds in Assertion (2) of Theorem 3 we get the following Corollary.

Corollary 2. For all k ≥ 2,
R̂2(k) ≤ (12 + o(1)) · 2k.

Note that the board size proved to be sufficient for Maker to win is drastically smaller than
the known lower bounds on R2(k), which are double exponential in k, see Equation 2. Instead
it is roughly the square of the obvious lower bound R̂2(k) ≥ 2k/2 + k − 1, which follows from
Theorem 3.

3.2 The general case

We prove an upper bound for the Paris-Harrington game of dimension d ≥ 3. The construction
is uniform in the dimension. Again we reduce the Paris-Harrington game to a standard Ramsey
Game.

Theorem 6. For all d ≥ 3,
R̂d(k) ≤ r̂d(rd−1(k)) + k + 1.

Proof. We describe a winning strategy for the Maker on the board [k,N ] whereN = r̂d(rd−1(k))+
k + 1.

Consider the interval I = [k + 2, N ]. Maker has a strategy for winning the game
RAM(d, rd−1(k), |I|), because |I| = r̂d(rd−1(k)). Maker starts by playing this strategy on the
set I, and indeed her first move of the game is the first move of that strategy.
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Simultaneously Maker keeps the following behavior: every time Breaker picks an hyperedge
of the form {k} ∪X where X ∈

(
I
d−1
)
, Maker answers by picking the hyperedge {k + 1} ∪X;

dually if Breaker picks {k + 1} ∪ X, then Maker picks {k} ∪ X at the next move. If Breaker
picks an edges of the form {k, k + 1} ∪ Y for some Y , Maker makes an arbitrary move: the
intuition is that such Breaker moves are useless against Maker’s strategy. While Maker could
take advantage of such moves in order to obtain an earlier win, we choose to waste Maker’s
move in this case in order to simplify the following analysis.

The relevant moves by both players are either hyperedges in
(
I
d

)
or of the form {k} ∪ X

or {k + 1} ∪ X with X ∈
(
I
d−1
)
. The way the two types of moves interleave is such that

Maker is always one move ahead of Breaker when it comes to the game played on I. Maker is
playing a winning strategy for the Ramsey (d, rd−1(k))-game there, so she eventually captures
all d-hyperedges on a vertex set U ⊆ I of size rd−1(k).

From now on we consider the subsets X ⊆ U of size d − 1. Thanks to the moves of the
“second type” it holds that — after each Maker’s move — either both {k}∪X and {k+ 1}∪X
have been picked — one by Maker and the other by Breaker — or none of them has been picked
by either Maker or Breaker. The moves of the play of the “second type” determine a partial
coloring of

(
U
d−1
)

as follows: if {k} ∪X belongs to Maker then X is colored k, otherwise X is
colored k + 1 (note that in the latter case the hyperedge {k + 1} ∪X belongs to Maker).

At some point
(
U
d−1
)

will be completely colored (the board is finite, so the Breaker cannot

play indefinitely). Since U has size rd−1(k), there exists U ′ ⊆ U such that U ′ has size k and is
monochromatic for the coloring induced by the moves of “second type”. If the color of U ′ is k
then {k}∪U ′ is a homogeneous relatively large set and thus a winning set for the Maker. If the
color of U ′ is k + 1 then {k + 1} ∪ U ′ is such a winning set for the Maker.

Corollary 3. For every d ≥ 3, there exists a constant c′d such that for every k ≥ d, if

N ≥ 2c
′
d·towerd−2(4k)

d

+ k + 1,

then Maker has a winning strategy for the Paris-Harrington game PH(d, k,N).

Proof. The following inequalities hold, where the constant c′d is the same as in Assertion (2) of
Theorem 4.

R̂d(k) ≤ r̂d(rd−1(k)) + k + 1

≤ 2c
′
d·(r

d−1(k))
d

+ k + 1

≤ 2c
′
d·towerd−2(4k)

d

+ k + 1

The first inequality holds by Theorem 6, the second inequality holds by Beck’s upper bound
on the Ramsey game (Assertion 2 of Theorem 4), and the third inequality holds by the known
bounds on Ramsey numbers, see Equation 1.

The upper bounds for the Paris-Harrington (d, k)-game in the previous Corollary should
be compared with the lower bounds on the corresponding Paris-Harrington principles. For
example, for d = 3, Corollary 3 gives an upper bound of the order of 2c·2

(d4k)
+ k + 1, while

the Paris-Harrington numbers for 3-hypergraphs dominate the primitive recursive functions!
Indeed, our bounds on the game functions are primitive recursive (even elementary) for each
d ≥ 2 while for d ≥ 3 the Paris-Harrington numbers are cofinal in the fast-growing hierarchy
(Fα)α<ε0 .
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4 Conclusion

We have introduced positional Maker-Breaker games in the sense of Beck [4], based on the
Paris-Harrington principle [12] for bi-colorings of hypergraphs of arbitrary dimension.

We have confirmed the following general pattern (see [2, 3, 18]): the upper bounds on
the positional games are dramatically smaller than the lower bounds on the corresponding
combinatorial principles. For Paris-Harrington games the difference is particularly striking. For
example, while the Paris-Harrington Theorem for bi-colorings of hypergraphs starts to have no
primitive recursive upper bound from dimension three on, the bounds on the corresponding
positional game are fixed stacks of exponentials.

We plan to consider the following natural problems in future research: (1) compute lower
bounds for the Paris-Harrington games, (2) compute actual Paris-Harrington game numbers
for small values of k, (3) study a stronger version of the games, in which the Breaker wins if
he colors a large complete sub-hypergraph in his own color, and (4) study the computational
complexity of Paris-Harrington games (as done in [21] for graph Ramsey games).

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments and suggestions which
helped improving the presentation of this paper.

References

[1] Noga Alon, Joel H. Spencer. The Probabilistic Method. Third Edition. Wiley, 2008. 5
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[18] Jaroslav Nešetřil and Tomáš Valla. On Ramsey-type positional games. Journal of Graph
Theory, 64(4):343–354, 2009. 1, 8
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