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Abstract. During the last two decades, an active line of research in proof complexity

has been into the space complexity of proofs and how space is related to other

measures. By now these aspects of the resolution proof system are fairly well

understood, but many open problems remain for the related but stronger proof

system polynomial calculus (PC/PCR). For instance, the space complexity of many

standard “benchmark formulas” is still open, as well as the relation of space to size

and degree in PC/PCR.

We prove that if a formula requires large resolution width, then making XOR

substitution yields a formula requiring large PCR space (and hence also PC space),

providing some circumstantial evidence that degree might be a lower bound for

An extended abstract of this paper appeared in the Proceedings of the 40th International Colloquium on

Automata, Languages and Programming (ICALP’13) [26].

∗
Supported by the European Research Council under the European Union’s Seventh Framework Programme

(FP7/2007–2013) / ERC grant agreement nos. 238381 and 279611 as well as by Swedish Research Council grants

621-2010-4797, 621-2012-5645 and 2016-00782, and the Independent Research Fund Denmark grant 9040-00389B.

ACM Classification: F.2.2, F.4.1

AMS Classification: 03F20

Key words and phrases: proof complexity, polynomial calculus, space, size, degree, separations

© 2025 Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals
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space. More importantly, this immediately yields formulas that are very hard for

space but very easy for size, exhibiting a size-space separation similar to what

is known for resolution. Using related ideas, we show that if a graph has good

expansion and if in addition its edge set can be partitioned into short cycles, then

the Tseitin formula over this graph requires large PCR space. In particular, Tseitin

formulas over random 4-regular graphs almost surely require space at least Ω
(√
=
)
.

Our proofs use techniques introduced by Bonacina and Galesi (ITCS’13). Our

final contribution, however, is to show that these techniques provably cannot yield

non-constant space lower bounds for the functional pigeonhole principle, delineating

the limitations of this framework.

1 Introduction

Proof complexity studies how hard it is to provide succinct certificates of unsatisfiability for

formulas in propositional logic—i. e., proofs that formulas always evaluate to false under any

truth value assignment, where these proofs are verifiable in time polynomial in their size. It

is widely believed that there is no proof system where such efficiently verifiable proofs can

always be of size at most polynomial in the size of the formula. Showing this would establish

NP ≠ coNP, and hence P ≠ NP, and the study of proof complexity was initiated by Cook and

Reckhow [23] as an approach towards this (still very distant) goal.

A second prominent motivation for proof complexity is the connection to applied SAT

solving. Any algorithm for solving SAT defines a proof system in the sense that the execution

trace of the algorithm constitutes a polynomial-time verifiable witness of unsatisfiability. (Such

a witness is often referred to as a refutation rather than a proof , and we will use the two terms

interchangeably in this paper.) In the other direction, most modern SAT solvers can in fact be

seen to search for proofs in systems studied in proof complexity, and upper and lower bounds

for these proof systems hence give information about the potential and limitations of such SAT

solvers.

In addition to running time, a major concern in SAT solving is memory consumption. In

proof complexity, these two resources are modelled by proof size/length and proof space. It is

thus interesting to understand these complexity measures and how they are related to each

other, and such a study reveals intriguing connections that are also of intrinsic interest to proof

complexity. In this context, it is natural to focus on proof systems at comparatively low levels in

the proof complexity hierarchy that are, or could plausibly be, used as a basis for SAT solvers.

Such proof systems include resolution and polynomial calculus. This paper takes as its starting

point the former system but focuses on the latter.

1.1 Previous work

The resolution proof systemwas introduced in [15], and is at the foundation of state-of-the-art SAT

solvers based on so-called conflict-driven clause learning (CDCL) [6, 36, 39]. In resolution, one

derives new disjunctive clauses from the clauses of the original CNF formula until contradiction
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is reached. One of the early breakthroughs in proof complexity was the moderately exponential

exp(Ω(=1/3)) lower bound on proof length (measured as the number of clauses in a proof)

obtained by Haken [29]. Simply exponential lower bounds—i. e., bounds exp(Ω(=)) in the size =

of the formula—were later established in [21, 44] and other papers.

Ben-Sasson and Wigderson [13] identified width as a crucial resource, where the width is the

size of a largest clause in a resolution proof. They proved that strong lower bounds on width

imply strong lower bounds on length, and used this to rederive essentially all known length

lower bounds in terms of width.

The study of space in resolution was initiated by Esteban and Torán [25], measuring the

space of a proof (informally) as the maximum number of clauses needed to be kept in memory

during proof verification. Alekhnovich et al. [1] later extended the concept of space to a more

general setting, including other proof systems. The (clause) space measure can be shown to be

at most linear in the formula size, and matching lower bounds were proven in [1, 10, 25].

Atserias and Dalmau [4] established that width is in fact a lower bound on space, which

made it possible to rederive all hitherto known space lower bounds as corollaries of width lower

bounds. A strong separation of the two measures was obtained in [11] (building on earlier

work [40, 41]), exhibiting a formula family with constant width complexity but almost linear

space complexity. Also, dramatic space-width trade-offs have been shown in [9], with formulas

refutable in constant width and also in constant space where optimizing one of the measures

causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [4] that formulas of

low space complexity also have short proofs. For the subsystem of tree-like resolution, where

each line in the proof can only be used once, [25] showed that length upper bounds also imply

space upper bounds, but for general resolution [11] established that this is false in the strongest

possible sense. Strong trade-offs between length and space were proven in [12, 7].

This paper focuses on the more powerful polynomial calculus (PC)1 proof system introduced

by Clegg et al. [22], which is not at all as well understood. In a PC proof, clauses are interpreted

as multilinear polynomials (expanded out to sums of monomials), and one derives contradiction

by showing that these polynomials have no common root. Intriguingly, while proof complexity-

theoretic results seem to hold out the promise that SAT solvers based on polynomial calculus

could be orders of magnitude faster than CDCL, such algebraic solvers (such as [19]) have so far

failed to be truly competitive.

Proof size2 in polynomial calculus is measured as the total number of monomials in a proof

and the analogue of resolution space is the number of monomials needed simultaneously in

memory during proof verification. Clause width in resolution translates into polynomial degree

in PC. While length, space and width in resolution are fairly well understood as surveyed above,

our understanding of the corresponding complexity measures in polynomial calculus is much

1Strictly speaking, to get a stronger proof system than resolution we need to look at the generalization polynomial
calculus resolution (PCR) as defined in [1], but in the interest of simplicity of exposition we will not really distinguish

between PC and PCR in this introduction.

2The length of a proof is the number of lines, whereas size also considers the size of lines. In resolution the two

measures are essentially equivalent. In PC, size and length can be very different, however, and so size is the right

measure to study.
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more limited.

Impagliazzo et al. [32] showed that strong degree lower bounds imply strong size lower

bounds. This is a parallel to the length-width relation in [13], and in fact the latter paper can

be seen as a translation of the bound in [32] from PC to resolution. This size-degree relation

has been used to prove exponential lower bounds on size in a number of papers, with [2, 37]

providing the most general setting.

The first lower bounds on space were reported in [1], but only sublinear bounds and only for

formulas of unbounded width. The first space lower bounds for :-CNF formulas for constant :

were presented in [27], and asymptotically optimal (linear) lower bounds were finally proven

by Bonacina and Galesi [18]. However, there are several formula families with high resolution

space complexity for which the polynomial calculus space complexity has remained unknown,

e. g., Tseitin formulas (encoding that the sum of all vertex degrees in an undirected graph must

be even), ordering principle formulas (saying that a finite ordered set has a minimal element),

and functional pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is a lower

bound for space (which would be the analogue of what holds in resolution) and also it has been

unknown whether the two measures can be separated in the sense that there are formulas of

low degree complexity requiring high space. On the first question, the authors of [18] suggest

that their techniques might be a step towards understanding degree and proving that degree is

a lower bound on space, similar to how this was done for resolution width in [4]. On the second,

Beck et al. [8] proved a space-degree trade-off analogous to the resolution space-width trade-off

in [9] (in fact for the very same formulas). This could be interpreted as indicating that there

should be a space-degree separation analogous to the space-width separation in resolution.

As to size versus space in polynomial calculus, essentially nothing has been known. It has

been open whether small space complexity implies small size complexity and/or the other way

around. Some size-space trade-offs have been reported in [8, 30], but these trade-offs are weaker

than the corresponding results for resolution.

1.2 Our results

We study the relation of size, space, and degree in PC (and the stronger system PCR) and present

a number of new results as briefly described below.

1. We prove that if the resolution width of refuting a CNF formula � isF, then by substituting

each variable by an exclusive or of two new variables and expanding out we get a new

CNF formula �[⊕] requiring PCR space Ω(F). In one sense, this is stronger than claiming

that degree is a lower bound for space, since high width complexity is a necessary but

not sufficient condition for high degree complexity. In another sense, however, this is

(much) weaker, in that XOR substitution can amplify the hardness of formulas substantially.

Nevertheless, to the best of our knowledge this is the first result making any connection

between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between size and

degree on the one hand and space on the other. Namely, taking expander graphs and
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making double copies of all edges, we show that Tseitin formulas over such graphs

have proofs in size O(= log =) and degree O(1) in PC but require space Θ(=) in PCR.

(Furthermore, since these small-size proofs are tree-like, this shows that there is no tight

correlation between size and space in tree-like PC/PCR in contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin formulas

over (simple or multi-)graphs where the edge set can be partitioned into short cycles. (The

two copies of every edge in the multi-graph above form such cycles, but this works in

greater generality.) In particular, for Tseitin formulas over random 3-regular graphs for

3 ≥ 4 we establish that an Ω(
√
=) PCR space lower bound holds asymptotically almost

surely.

4. On the negative side, we show that the techniques in [18] cannot prove any non-constant

PCR space lower bounds for functional pigeonhole principle (FPHP) formulas. That

is, although these formulas require high degree [37], the machinery developed in [18]

provably cannot establish such degree lower bounds or convert them into space lower

bounds. Unfortunately, this seems to indicate that we are further from characterizing

degree in PC/PCR than previously hoped.

1.3 Subsequent developments

Since the conference version of this paper appeared [26], there have been further developments

for several of the problems discussed above. Most significantly, Galesi et al. [28] have shown

that the square root of the resolution width provides an asymptotic lower bound for polynomial

calculus space. This is closely related to our first result, and significantly improves on it in

the sense that the bound in [28] does not require any XOR substitution to convert width lower

bounds to space lower bounds. However, there is a square root loss in the lower bound, whereas

in our result the lower bound on PCR space is linear in the resolution width.

As a corollary of this lower bound on polynomial calculus space in terms of resolution

width, one can also obtain Ω
(√
=
)
space lower bounds for (appropriate versions of) ordering

principle formulas, functional PHP formulas, and Tseitin formulas. In particular, this simplifies

and generalizes our third result, a space lower bound for Tseitin formulas, to work for any graph

with good enough expansion, regardless of whether this graph has been randomly sampled

or not. However, this Ω
(√
=
)
lower bound is weaker than the optimal Ω

(
=
)
lower bound that

we obtain for Tseitin formulas over expander graphs with two copies of every edge. It seems

plausible that the correct lower bond should be Ω
(
=
)
for all of these formulas, but the square

root loss seems hard to avoid if one wants to use the approach in [28].

For Tseitin formulas, Austrin and Risse [5] recently improved the polynomial calculus space

lower bound to Ω(=/log =), but this lower bound only holds for graphs of very large (though

still constant) vertex degree. In particular, for any graphs of degree less than 6, multi-graphs

or not, the best lower bound is still Ω
(√
=
)
, while for 6-regular multi-graphs the current paper

establishes a lower bound Ω(=).
Finally, we should mention that one question left open in [18] was to prove polynomial

calculus space lower bounds for random 3-CNF formulas—the techniques in [18] only apply to
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:-CNF formulas with : ≥ 4. This problem has been resolved by Bennett et al. [14], and their

result is the first polynomial calculus space lower bound for any CNF formulas of width less

than 4.

1.4 Organization of this paper

The rest of this paper is organized as follows. We briefly review preliminaries in Section 2.

Section 3 presents an overview of our results and provides some proof sketches outlining the

main technical ideas that go into the proofs.

In Section 4, we prove that resolution width lower bounds plus substitutions with XOR or

other suitable Boolean functions yield PCR space lower bounds. We use this in Section 5 to

separate size and degree from space in PC and PCR. In Section 6, we show PCR space lower

bounds for Tseitin formulas over graphs with edge sets decomposable into partitions of short

cycles. The proof that random 3-regular graphs for 3 ≥ 4 (almost) decompose into cycles of

length O(
√
=) is given in Section 7. The fact that PCR space lower bounds cannot be obtained for

the functional pigeonhole principle formulas with techniques from [18] is proven in Section 8,

and in the same section we show that a larger class of formulas containing FPHP formulas have

essentially the same space complexity for PC and PCR (so that when proving lower bounds, one

can without loss of generality ignore the complementary formal variables for negative literals

in PCR and focus only on PC). We make some concluding remarks and discuss some of the

(many) open questions remaining in Section 9. For completeness, in Appendix A we provide a

full description of our version of the techniques in [18] and provide proofs that the same claims

still hold in this slightly different setting.

2 Preliminaries

Let us start by quickly reviewing some required background material. We refer the reader to,

e. g., [20, 35] for a more in-depth treatment of proof complexity.

A literal over a Boolean variable G is either the variable G itself (a positive literal) or its negation
¬G or G (a negative literal). It will also be convenient to use the alternative notation G0 = G,

G1 = G, where we identify 0 with true and 1 with false3 (so that G1 is true if G = 1). A clause
� = 01 ∨ · · · ∨ 0: is a disjunction of literals. We denote the empty clause by ⊥. A clause

containing at most : literals is called a :-clause. A CNF formula � = �1 ∧ · · · ∧�< is a conjunction

of clauses. A :-CNF formula is a CNF formula consisting of :-clauses. We think of clauses and

CNF formulas as sets, so that order is irrelevant and there are no repetitions.

Let F be a field and consider the polynomial ring F [G, G, H, H, . . .], where G and G are viewed

as distinct formal variables. We employ the standard notation [=] = {1, . . . , =}.

Definition 2.1 (Polynomial calculus resolution (PCR)). A PCR configuration ℙ is a set of polyno-

mials in F [G, G, H, H, . . .]. A PCR refutation of a CNF formula � is a sequence of configurations

3Note that this notational convention is the opposite of what is found in many other papers, but as we will see

shortly it is the natural choice in the context of polynomial calculus.
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{ℙ0 , . . . ,ℙ�} such that ℙ0 = ∅, 1 ∈ ℙ�, and for C ∈ [�] we obtain ℙC from ℙC−1 by one of the

following steps:

Axiom download ℙC = ℙC−1 ∪ {?}, where ? is either a monomial < =
∏

8 G
1
8
encoding a clause

� =
∨
8 G

1
8
∈ �, or a Boolean axiom G2− G or complementarity axiom G+ G−1 for any variable G

(or G).

Inference ℙC = ℙC−1 ∪ {?}, where ? is inferred by linear combination @ A


@+�A or multiplication @

G@

from polynomials @, A ∈ ℙC−1 for 
, � ∈ F and G a variable.

Erasure ℙC = ℙC−1 \ {?}, where ? is a polynomial in ℙC−1.

If we drop the complementarity axioms and encode each negative literal G as the polynomial

(1 − G), the proof system is called polynomial calculus (PC).
The size S(�) of a PC/PCR refutation� is the number ofmonomials (countedwith repetitions)

in all downloaded or derived polynomials in�, the (monomial) space Sp(�) is themaximal number

of monomials (counted with repetitions)4 in any configuration in �, and the degree Deg(�) is the
maximal degree of any monomial appearing in �. Taking the minimum over all PCR refutations

of a formula �, we define the size SPCℛ(� `⊥), space SpPCℛ(� `⊥), and degree DegPCℛ(� `⊥) of
refuting � in PCR (and analogously for PC).

Since PC refutations are a subset of PCR refutations, the size, space and degree of refuting �

in PCR are always at most those of refuting � in PC. The degree always coincides, simply because

the transformation G ↦→ (1 − G) is affine, but the size and monomial space may be exponentially

larger; for instance when a refutation needs to use the clause G1 ∨ · · · ∨ G= as an axiom, which is

encoded as a single monomial G1 · · · G= in PCR but as 2
=
monomials (1 − G1) · · · (1 − G=) in PC.

Furthermore there are :-CNF formulas for which PCR is exponentially stronger than PC, in the

sense that such formulas have polynomial size refutations in PCR but require exponential size

in PC to be refuted [24].

We can also define resolution in this framework, where proof lines are always clauses (i. e.,

single monomials) and new clauses can be derived by the resolution rule inferring � ∨ � from

� ∨ G and � ∨ G. The length of a resolution refutation � is the number of downloaded and

derived clauses, the space is the maximal number of clauses in any configuration, and the width
is the size of a largest clause appearing in � (or equivalently the degree of such a monomial).

Taking the minimum over all refutations as above we get the measures Lℛ(� `⊥), Spℛ(� `⊥),
and Wℛ(� `⊥). It is not hard to show that PCR can simulate resolution efficiently with respect

to all these measures.

We say that a refutation is tree-like if every line is used at most once as the premise of an

inference rule before being erased (though it can possibly be rederived later). All measures

discussed above can also be defined for restricted subsystems of resolution, PC and PCR

admitting only tree-like refutations.

Let us now describe the family of CNF formulas which will be the main focus of our study.

4We note that in [1], space was defined without counting repetitions of monomials. All our lower bounds hold in

this more stringent setting as well.
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0 0

x y

z

(a) Labelled triangle graph.

(G ∨ H)
∧ (G ∨ H)
∧ (G ∨ I)
∧ (G ∨ I)
∧ (H ∨ I)
∧ (H ∨ I)

(b) Corresponding Tseitin formula.

Figure 1: Example Tseitin formula.

Definition 2.2 (Tseitin formula). Let � = (+, �) be an undirected graph and " : + → {0, 1}
be a function. Identify every edge 4 ∈ � with a variable G4 and let PARITYE," denote the CNF

encoding of the constraint that the number of true edges G4 incident to a vertex E ∈ + is equal to

"(E) (mod 2). Then the Tseitin formula over � with respect to " is Ts(�, ") = ∧
E∈+ PARITYE,".

When the maximal degree of � is bounded by 3, PARITYE," has at most 2
3−1

clauses, all of

width at most 3, and hence Ts(�, ") is a 3-CNF formula with at most 2
3−1 |+ | clauses. Figure 1b

gives an example Tseitin formula generated from the graph in Figure 1a. We say that a set*

of vertices has odd (even) charge if "(*) = ∑
D∈* "(D) is odd (even, resp.). By a simple counting

argument one sees that Ts(�, ") is unsatisfiable if +(�) has odd charge. Lower bounds on

the hardness of refuting such unsatisfiable formulas Ts(�, ") can be proven in terms of the

connectivity expansion of � as defined next.

Definition 2.3 (Connectivity expansion [1]). The connectivity expansion of � = (+, �) is the largest
2 such that for every �′ ⊆ �, |�′ | ≤ 2, the graph �′ = (+, � \ �′) has a connected component of

size strictly greater than |+ |/2.

Definition 2.4 (Substituted formula). If � is a CNF formula over a set - of variables and

5 : {0, 1}3 → {0, 1} is a Boolean function, then we can obtain a new CNF formula over a set -3

of new variables by substituting 5 (G8 ,1 , . . . , G8 ,3) for every variable G8 ∈ - and expanding out to

conjunctive normal form. We write �[ 5 ] to denote the resulting substituted formula.

We will be interested in substitutions with a particular kind of functions defined as follows.

Definition 2.5 (Non-authoritarian function [12]). We say that a Boolean function 5 (G1 , . . . , G3) is
non-authoritarian if for every variable G8 and for every assignment 
 to G8 there exist assignments


0 , 
1 to (G1 , . . . , G3) extending 
 such that 5 (
1) = 1 for 1 ∈ {0, 1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authoritarian, since

regardless of the value of one variable, the other one can be flipped to make the function true or

false. But standard (non-exclusive) or, ∨, is not non-authoritarian.
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Let us finally give a brief overview of the framework developed in [18], which we use to

prove our PCR space lower bounds.5

A partial partition Q of a set + of variables is a collection of disjoint subsets &8 ⊆ + . We use

the notation

⋃Q = ⋃
&∈Q &. For two sets of partial assignments, � and �′, to disjoint domains,

we denote by � × �′ the set of assignments defined by

� × �′ = {
 ∪ � | 
 ∈ � and � ∈ �′} .

A set � of partial assignments to the set & of variables is flippable on & if for each variable G ∈ &
and 1 ∈ {0, 1} there exists an assignment 
1 ∈ � such that 
1(G) = 1. We say that � satisfies a
formula � if all 
 ∈ � satisfy �.

AQ-structured assignment set is a pair (Q ,ℋ) consisting of a partial partitionQ = {&1 , . . . , &C}
of + and a set of partial assignments, ℋ =

∏C
8=1
�8 , where �8 is an assignment to &8 and is

flippable on&8 . We write (Q ,ℋ) 4 (Q′,ℋ ′) if Q ⊆ Q′ andℋ ′�Q = ℋ , whereℋ ′�Q =
∏

&8∈Q �
′
8
.

A structured assignment set (Q ,ℋ) respects a CNF formula �′ if for every clause � ∈ �′ either
Vars(�) ∩⋃Q = ∅ or there is a set & ∈ Q such that Vars(�) ⊆ & andℋ satisfies �.

Expressed in this language, the key technical definition in [18] is as follows.

Definition 2.6 (Extendible family). A non-empty family ℱ of structured assignment sets (Q ,ℋ)
is A-extendible for a CNF formula � with respect to a satisfiable �′ ⊆ � if every (Q ,ℋ) ∈ ℱ
satisfies the following conditions.

Size |Q| ≤ A.

Respectfulness (Q ,ℋ) respects �′.

Restrictability For every Q′ ⊆ Q the restriction (Q′,ℋ�Q′) is in ℱ .

Extendibility If |Q| < A then for every clause � ∈ � \ �′ there exists (Q′,ℋ ′) ∈ ℱ such that

1. (Q ,ℋ) 4 (Q′,ℋ ′), 2.ℋ ′ satisfies �, and 3. |Q′ | ≤ |Q| + 1.

When �′ = ∅, we simply say that ℱ is A-extendible for �.

To prove PCR space lower bounds for a formula �, it is sufficient to find an extendible family

for �.

Theorem 2.7 ([18]). Suppose that � is a CNF formula which has an A-extendible family ℱ with respect
to some �′ ⊆ �. Then SpPCℛ(� `⊥) ≥ A/4.

All space lower bounds presented in this paper are obtained in this manner, where in

addition we always have �′ = ∅.

5The definitions we use are equivalent in essence but not in detail to those in [18]. We prove that the same results

still hold in Appendix A for completeness.
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3 Overview of results and sketches of some proofs

In this section, we give a more detailed overview with formal statements of our results, and also

provide some proof sketches in order to convey the main technical ideas. As a general rule, the

upper bounds we state are for polynomial calculus (PC) whereas the lower bounds hold for the

stronger system polynomial calculus resolution (PCR). In fact, even more can be said: just as is

the case in [1, 27, 18], all our lower bounds hold also for functional calculus, where proof lines are

arbitrary Boolean functions over clauses/monomials and anything that follows semantically

from the current configuration can be derived in a single step. We do not discuss this further

below but instead refer to Appendix A for the details.

3.1 Relating PCR space and resolution width

The starting point of our work is the question of how space and degree are related in polynomial

calculus, and in particular whether it is true that degree is a lower bound on space. While an

exact characterization remains open, we make partial progress by showing that if the resolution

width of refuting a CNF formula � is large (which in particular must be the case if � requires

high degree), then by making XOR substitution we obtain a formula �[⊕] that requires large
PCR space. In fact, this works not only for exclusive or but for any non-authoritarian function

(as defined in Definition 2.5). The formal statement is as follows.

Theorem 3.1. Let � be a :-CNF formula and let 5 be any non-authoritarian function. Then it holds
over any field that SpPCℛ(�[ 5 ] `⊥) ≥ (Wℛ(� `⊥) − : + 1)/4.

Proof sketch. In one sentence, the proof of Theorem 3.1 is by combining the concept of extendible

families in Definition 2.6 with the combinatorial characterization of resolution width in [4]. We

show that the properties of � implied by the width lower bound can be used to construct an

extendible family for �[ 5 ]. To make this description easier to parse, let us start by describing in

somewhat more detail the width characterization in [4].

Consider the following game played on � by two players, Spoiler and Duplicator. Spoiler asks
about values assigned to variables in � and Duplicator answers true or false. Spoiler can only

remember ℓ values simultaneously, however, and has to forget some variable when this limit is

reached. If Duplicator is later asked about some forgotten variable, the new value needs not

be consistent with the previous forgotten one. Spoiler wins the game by constructing a partial

assignment that falsifies some clause in �, and Duplicator wins if Duplicator has a strategy to

keep playing forever without Spoiler ever reaching this goal. It was proven in [4] that this game

exactly captures resolution width in the sense that Duplicator has a winning strategy if and only

if ℓ ≤ Wℛ(� `⊥).
Continuing our proof sketch, let us fix A = Wℛ(� `⊥) − : + 1 and use Duplicator’s winning

strategy for ℓ = Wℛ(� ` ⊥) to build an A-extendible family for �[⊕]. (The proof for general

non-authoritarian functions is very similar and is given in Section 4.) Consider any assignment


 reached during the game. We define a corresponding structured assignment set (Q
 ,ℋ
) by
adding a block &G = {G1 , G2} to Q
 for every G ∈ dom(
), and let �G contain all assignments 
G
to {G1 , G2} such that 
G(G1 ⊕ G2) = 
(G).
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In the end the A-extendible family for �[⊕] is built as the set of all (Q
 ,ℋ
) corresponding to

the partial assignments 
 reached during the game played on �. It only remains to verify that

this construction yields indeed an extendible family as described in Definition 2.6, and to apply

Theorem 2.7. �

3.2 Separation of size and degree from space

An almost immediate consequence of Theorem 3.1 is that there are formulas which have small

PC refutations in constant degree but nevertheless require maximal space in PCR.

Theorem 3.2. For any field F of characteristic ? > 0 there is a family of :-CNF formulas �= (where :
depends on ?) of size O(=) for which SpPCℛ(�= `⊥) = Ω(=) over any field F ′ but which have tree-like
PC refutations �= : �= `⊥ over F of size S(�=) = O(= log =) and degree Deg(�=) = O(1).

Proof sketch. Let us focus on ? = 2, deferring the general proof to Section 5. Consider a Tseitin

formula Ts(�, ") for any constant-degree graph � over = vertices with connectivity expansion

Ω(=) and any odd-charge function ".
From [13] we know that Wℛ(� `⊥) = Ω(=). It is not hard to see that XOR substitution yields

another Tseitin formula Ts(�′, ") for the multi-graph �′ obtained from � by adding double

copies of all edges. This formula requires large PCR space (over any field) by Theorem 3.1. The

upper bound follows by observing that the CNF encodes a linear system of equations, which is

easily shown inconsistent in PC by summing up all equations in a tree-like fashion. �

It follows from Theorem 3.2 that tree-like space in PC/PCR is not a lower bound on the

logarithm of tree-like size, in contrast to resolution. This is the only example we are aware

of where the relations between size, degree, and space in PC/PCR differ from those between

length, width, and space in resolution, so let us state this as a formal corollary.

Corollary 3.3. It is not true in PC/PCR that tree-like space complexity is a lower bound on the logarithm
of tree-like size complexity.

3.3 Space complexity of Tseitin formulas

A closer analysis of the proof of Theorem 3.2 reveals that it partitions the edge set of �′ into short

edge-disjoint cycles (namely, length-2 cycles corresponding to the two copies of each original

edge) and uses partial assignments that all maintain the same parities of the vertices on a given

cycle. It turns out that this approach can be made to work in greater generality as stated next.

Theorem 3.4. Let � = (+, �) be a connected graph of maximal degree 3 with connectivity expansion 2
such that the edge set � can be partitioned into cycles of length at most 1. Then it holds over any field that
SpPCℛ(Ts(�, ") `⊥) ≥ 2/41 − 3/8.

Proof sketch. We build on the resolution space lower bound in [1, 25], where the proof works by

inductively constructing an assignment 
C for each derived configurationℂC (which corresponds

to removing edges from � and updating the vertex charges accordingly) such that (a) 
C satisfies
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ℂC , and (b) 
C does not create any odd-charge component in � of size less than =/2. The

inductive update can be performed as long as the space is not too large, which shows that

contradiction cannot be derived in small space (since ℂC is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an exponential number

of such good assignments, and in general we do not know how to do this. Nevertheless, some

more thought reveals that the only important aspect of our assignments are the resulting vertex

parities. And if the edge set is partitioned into cycles, we can always shift edge charges along

the cycles so that for all the exponentially many assignments, the vertex parities are all the same

(meaning that on a higher level we only have to maintain one good assignment after all). The

full proof is presented in Section 6. �

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1), yielding
tight bounds on space. A bit more surprisingly, random 3-regular graphs for 3 ≥ 4 turn out to

(sort of) admit partitions into cycles of length O(
√
=), which yields the following theorem.

Theorem 3.5. Let � be a random 3-regular graph on = vertices, where 3 ≥ 4. Then over any field it
holds almost surely that SpPCℛ(Ts(�, ") `⊥) = Ω

(√
=
)
.

Proof sketch. As long as we are interested in properties holding asymptotically almost surely,

we can replace random 4-regular graphs with unions of two random Hamiltonian cycles [34].

We show that a graph distributed according to the latter model almost surely decomposes

into cycles of length O(
√
=), along with �= additional edges (which are easily taken care of

separately). Since random graphs are also excellent expanders, we can apply Theorem 3.4. The

argument extends straightforwardly to random 3-regular graphs for any 3 ≥ 4. The full proof,

which contains a bit more by way of technical details, is given in Section 7. �

We believe that the true space bound should actually be Θ(=), just as for resolution, but such
a result seems beyond the reach of our current techniques. Also, note that to make Theorem 3.4

go through we need graph expansion plus partitions into short cycles. It seems plausible that

expansion alone should be enough to imply linear PCR space lower bounds, as for resolution,

but again we are not able to prove this. In a recent paper, Galesi et al. [28] prove a space lower

bound just using graph expansion, with no need for a partition into short cycles to exist, but

interestingly they obtain a Ω(
√
=) space lower bound as well.

3.4 Limitations of the PCR space lower bound technique

The framework in [18] can also be used to rederive all PCR space lower bounds shown previously

in [1, 27], and in this sense [18] sums up what we knew about PCR space lower bounds up

to that point. There are also intriguing similarities between [18] and the resolution width

characterization in [4] (as partly hinted in the proof sketch for Theorem 3.1), which raises the

question whether extendible families could perhaps be a step towards characterizing degree

and showing that degree is a lower bound on space in PC/PCR.

Even more intriguingly, there are CNF formulas for which extendible families are hard but

possible to construct, such as random 3-CNF formulas [14], and formulas where extendible
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families seem very hard to construct. Such formulas include ordering principle formulas, for

which PCR space lower bounds are expected to hold, and functional pigeonhole principle

(FPHP) formulas, for which (possibly not tight) PCR space lower bounds can be proven by other

means [28].

We show that the problems in applying [18] to the functional version of the pigeonhole

principle are inherent, in that these techniques provably cannot establish any nontrivial space
lower bound. We refer to Section 8 for the formal description of the formulas and the proof of

the next theorem.

Theorem 3.6. There is no A-extendible family for FPHP=+1

= for A > 1.

Since by [43, 37] these formulas require PC refutation degree Ω(=), one way of interpreting

Theorem 3.6 is that the concept of A-extendible families is very far from providing the hoped-for

characterization of degree. That is a pity since in principle the framework in [18] allows to show

space lower bounds up to linear size, while the technique in [28] cannot.

One step towards proving linear space lower bounds for PCR could be to obtain a weaker

linear space lower bound for PC—as noted above in the discussion of 3-CNF formulas, this can

sometimes be easier. For FPHP=+1

= , however, and for a slightly more general class of formulas

described in Section 8, it turns out that the monomial space is more or less the same between PC

and PCR.

Theorem 3.7. SpPCℛ(FPHP=+1

= `⊥) = Θ(SpPC(FPHP=+1

= `⊥)).

Proof sketch. In FPHP=+1

= we have variables G8 , 9 for 8 ∈ [= + 1], 9 ∈ [=], encoding that pigeon

8 goes into hole 9. The clauses of the formula require that every pigeon is mapped to some

hole and that this mapping is one-to-one. Because of this, the negation of G8 , 9 is equivalent

to

∨
9′≠9 G8 , 9′ and so the literal G 8 , 9 can be encoded as the monomial

∏
9′≠9 G8 , 9′ in PC. Since this

substitutes a monomial for a monomial the space does not increase. Now we can take any PCR

refutation of FPHP=+1

= and apply such substitutions line by line. The inferences remain sound

(with some local auxiliary steps added) and so this process gives a PC refutation of FPHP=+1

= in

roughly the same space. �

4 PCR space lower bounds from resolution width

In the rest of this paper, we give formal proofs of the results described in Section 3. We start by

considering the question of relating space and degree in PCR. Although we do not know how

to prove (or rule out) an analogue of the relation between space and width in resolution, we

can use the combinatorial game from [4] to prove a weaker relation between PCR space and

resolution width. Recall from the informal description of the game in Section 3.1 that we have

two players, Spoiler and Duplicator, and that Duplicator needs to be able to provide an answer

to any of Spoiler’s questions about assignments to some bounded number of variables in order

to win the game. Formally, a winning strategy for Duplicator is defined as follows.
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Definition 4.1 (Duplicator’s strategy [4]). ADuplicator winning strategy for the Boolean existential

ℓ -pebble game on a CNF formula � is a non-empty familyD of partial truth value assignments

to Vars(�) such that every 
 ∈ D satisfies the following conditions:

1. No clause � ∈ � is falsified by 
.

2. The domain of 
 has size at most |dom(
)| ≤ ℓ .

3. For every subassignment 
′ ⊆ 
 it holds that 
′ ∈ D.

4. If |dom(
)| < ℓ , then for every variable G there exists an 
′ ∈ D that assigns a value to G

and extends 
 (i. e., 
′ ⊇ 
).

In [4], Atserias and Dalmau proved the following tight connection between Duplicator

winning strategies and resolution refutation width.

Theorem 4.2 ([4]). The CNF formula � has a resolution refutation of width ℓ if and only if Duplicator
has no winning strategy for the Boolean existential (ℓ + 1)-pebble game on �.

The Duplicator strategy in Definition 4.1 has some similarities with the extendible family in

Definition 2.6, which can be taken to suggest that there might be a relation between resolution

width and PCR space. The main difference is that extendible families consist of sets of

assignments in which we must be able to flip every variable, while Duplicator’s strategy is

built on fixed individual assignments. However, if we substitute every variable in � with a

non-authoritarian function as defined in Definition 2.5, then it is straightforward to make the

transition from fixed assignments to sets of flippable assignments.

Lemma 4.3. Let � be a :-CNF formula and let 5 be a non-authoritarian function. If Duplicator wins the
Boolean existential ℓ -pebble game on �, then there exists an (ℓ − : + 1)-extendible family for �[ 5 ].

Proof. LetD be a winning Duplicator strategy for �. We will useD to construct an (ℓ − : + 1)-
extendible family ℱ for the substituted formula �[ 5 ]. In what follows, let us denote by

Vars3(G) the set of variables that we get when we substitute G by 5 (G1 , . . . , G3) in � for some

non-authoritarian function 5 of arity 3.

For G ∈ Vars(�), define &G = Vars3(G) and let �G,
 = {� | dom(�) = &G and 5 (�) = 
(G)} be
the set of all assignments over &G for which 5 evaluates to the value that 
 assigns to G. For

any partial assignment 
 ∈ D we let the corresponding structured assignment set (Q
 ,ℋ
)
be the pair consisting of Q
 = {&G | G ∈ dom(
)} and ℋ
 =

∏
G∈dom(
)�G,
. We define ℱ

to encompass all structured assignment sets (Q
 ,ℋ
) corresponding to partial assignments


 ∈ D with |dom(
)| ≤ ℓ − : + 1. We need to prove that ℱ constructed in this way is an

(ℓ − : + 1)-extendible family with respect to �′ = ∅.
By construction, for every (Q
 ,ℋ
) ∈ ℱ we have that Q
 is a partial partition and that the

partial assignments �G,
 ∈ ℋ
 assign to &G ∈ Q
. Furthermore, �G,
 is flippable on &G . This

is so since 5 is a non-authoritarian function, which means that for very variable in G8 ∈ &G

there exist assignments �1 , 1 ∈ {0, 1}, to &G such that �1(G8) = 1 and 5 (�1) = 
(G). Hence, all

(Q
 ,ℋ
) ∈ ℱ are structured assignment sets.
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The size condition |Q
 | ≤ ℓ − : + 1 in Definition 2.6 is clearly satisfied for all (Q
 ,ℋ
) ∈ ℱ ,

and respectfulness is vacuously true. To see that the restriction property also holds, consider

any (Q
 ,ℋ
) ∈ ℱ obtained from 
 ∈ D. For any subset Q′ ⊆ Q
, let 
′ be the subassignment of


 restricted to {G | &G ∈ Q′} and letℋ ′ = ∏
&G∈Q′ �G,
 =

∏
G∈dom(
′)�G,
′. Then since 
′ ∈ D

by Definition 4.1, it follows by the construction of ℱ that (Q′,ℋ�Q′) = (Q′,ℋ ′) ∈ ℱ as required.

It remains to prove that ℱ has the extension property. Let (Q
 ,ℋ
) ∈ ℱ be such that

|Q
 | < ℓ − : + 1 and let � be a clause in �[ 5 ]. We need to argue that (Q
 ,ℋ
) can be extended

to satisfy �. Let � ∈ � be the clause such that � ∈ �[ 5 ], i. e., � is one of the clauses obtained

when substituting 5 in �. If 
 ∈ D satisfies �, it follows by construction thatℋ
 satisfies all of

�[ 5 ] and hence, in particular, �, and we are done. Otherwise, it follows from the definition

of a winning Duplicator strategy and the fact that |
 | ≤ ℓ − : that 
 can be extended to an

assignment 
′ that queries all of the (at most :) variables in � without falsifying the clause.

Such an 
′ must satisfy �. Fix some variable G∗ ∈ dom(
′) \ dom(
) such that 
′ satisfies � by

assigning to G∗, and let 
∗ be the subassignment of 
′ with domain dom(
) ∪ {G∗}. This 
′ must

be in D by Definition 4.1, and analogously to what was argued above it must hold that ℋ
∗

satisfies � ∈ �[ 5 ]. It is clear that (Q
 ,ℋ
) 4 (Q
∗ ,ℋ
∗), and that |Q
∗ | ≤ |Q
 | + 1. Hence, ℱ
satisfies extendibility, and the lemma follows. �

Combining Lemma 4.3 with the combinatorial characterization of width in Theorem 4.2 and

the lower bound on space in terms of extendible families in Theorem 2.7, we obtain the first

theorem claimed in Section 3.

Theorem 4.4 (restatement of Theorem 3.1). Let � be a :-CNF formula and let 5 be any non-authori-
tarian function. Then it holds over any field that

SpPCℛ(�[ 5 ] `⊥) ≥
Wℛ(� `⊥) − : + 1

4

.

While it can be argued that this theorem might be interpreted as an indication that degree

could be a lower bound for space in PCR, a more immediate and concrete consequence is that it

gives us a way to prove the existence of formulas which have very small PCR refutations, but for

which any refutation must have essentially maximal space. For polynomial calculus over fields

of characteristic 2, we already have all the tools needed to argue this. In particular, the space

lower bound needed follows immediately from Theorem 3.1 as described next.

Corollary 4.5. Let � be an expander graph of bounded maximal degree over = vertices, let " be an
odd-charge function on +(�), and let �′ be the multi-graph obtained by adding two copies of each edge
in �. Then

SpPCℛ(Ts(�′, ") `⊥) = Ω(=) .

Proof. As shown in [13], refuting Tseitin formulas over expander graphs requires linear width in

resolution. It is not hard to see that substituting with XOR in a Tseitin formula over � is the same

as considering the formula over the multi-graph with two copies of every edge. Thus Ts(�′, ")
requires monomial space Ω(=) by Theorem 3.1, which is linear in the formula size if � is a

constant-degree expander. �
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As briefly discussed in Section 3.2, it is not hard to show that Tseitin formulas have small

refutations in PCR (and even PC) over fields of characteristic 2, which yields Corollary 3.3 for

this characteristic. However, this upper bound does not hold for characteristics distinct from 2.

Therefore, we need to work with generalized version of Tseitin formulas and prove our results

for such formulas instead. We do so in the next section.

5 Formulas with small proofs may require large space

In Section 2 we defined Tseitin formulas as the CNF encoding of particular linear systems

over F2. Here we consider a generalization over fields of any positive characteristic. Any such

formula essentially defines an unsatisfiable linear system over F? for some prime ?. In order

to efficiently encode this linear system as a CNF it is important that each equation mentions a

small (for instance, constant) number of variables: any equation over 3 variables can be encoded

as a set of at most 2
3
clauses with 3 literals each. In particular, Tseitin formulas are defined on

directed graph as follows.

Definition 5.1. Let � = (+, �) be a directed graph and " : + → F? be a function. Identify every

directed edge (D, E) ∈ � with a variable G(D,E) and let Mod?E," denote the CNF encoding of the

constraint that the number of incoming edges G(D,E) incident to a vertex E ∈ + that are set to true,

minus the number of outgoing edges G(E,F) set to true is equal to "(E) (mod ?). Then the Tseitin
formula over � with respect to " is Ts?(�, ") = ∧

E∈+ Mod?E,".

This formula is unsatisfiable when

∑
E "(E) . 0 (mod ?). Compare Definition 2.2 with

Definition 5.1: for ? = 2 the definitions coincide because in such characteristic there is no

difference between the contribution of the incoming and the outgoing edges. For ? = 2 it is

natural to define the formula in terms of undirected graphs, indeed. Not surprisingly, polynomial

calculus over a field of characteristic ? efficiently refutes unsatisfiable Tseitin formulas defined

on sums modulo ?.

Lemma 5.2. Consider a directed graph � = (+, �) with = vertices and constant degree, and a function
" : + → F? with

∑
E "(E) . 0 (mod ?). The formula Ts?(�, ") has a tree-like polynomial calculus

refutation of constant degree, size O(= log =), and monomial space O(=).
Furthermore, given any boolean function 5 on a constant number of variables, the result holds for the

substituted formula Ts?(�, ")[ 5 ].

Proof. Let us first consider the case without substitution. Recall that true value is encoded as 0

and false as 1. In this encoding formula Mod?E," is equivalent to∑
D : (D,E)∈�

(1 − GDE) −
∑

F : (E,F)∈�
(1 − GEF) ≡ "(E) (mod ?) . (5.1)

The proof is based on the natural intuition that summing the equations (5.1) for all vertices

in the graph results in a contradiction, since in the sum each variable appears twice: once
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with positive and once with negative sign. Fix an enumeration of + = {E1 , . . . E=}, and fix the

following notation for partial sums:

(0,1 :=

1∑
8=0


∑

D:(D,E8)∈�
(1 − GDE8 ) −

∑
F:(E8 ,F)∈�

(1 − GE8F)
 ≡

1∑
8=0

"(E8) (mod ?) . (5.2)

We fix C = 2
dlog =e < 2= and consider (8 ,8 to be the equation “0 = 0” for all = < 8 ≤ C. We set

up a tree of height dlog =e, where leaves are labeled by equations (8 ,8 and internal nodes are

labeled by the sum of the two children labels (i. e., a node at level : is labeled by the equation

(8 ,8+2
:−1

for some 8).

Each equation (8 ,8 is derived from the encoding of Mod?E8 ,". This equation mentions only

a constant number of variables, so by implicational completeness of polynomial calculus (see

Lemma 5.3) we have a derivation of constant space and size.

Equations in internal nodes are derived by summing the equations of the children. We

derive all the equations of the tree in a bottom-up fashion. This concludes the refutation since

the equation (1,C at the root is

=∑
8=1


∑

D:(D,E8)∈�
(1 − GDE8 ) −

∑
F:(E8 ,F)∈�

(1 − GE8F)
 ≡

=∑
8=1

"(E8) (mod ?) (5.3)

∑
(D,E)∈�

(1 − GDE) −
∑
(E,F)∈�

(1 − GEF) ≡
=∑
8=1

"(E8) (mod ?) (5.4)

0 ≡
=∑
8=1

"(E8) (mod ?) (5.5)

Which is the end of the refutation, since

∑=
8=1

"(E8) is non-zero.
The size of the proof accounts O(1) for the deduction of each (8 ,8 , and O(=) for the total

number of monomials at each level of the tree: at level : there are C
2
: equations with at most

O(2:)monomials. So the total size is as claimed.

Regarding the monomial space, notice that we need to keep simultaneously in memory only

the equations of two adjacent levels, which have at most O(=)monomials.

The degree of the refutation is O(1) for the inference of each equation (8 ,8 . The rest of the

proof has degree 1.

The case with substitution is similar: consider a substituting function 5 on a constant number

of variables. There is a multilinear polynomial ? 5 which evaluates exactly as 5 on all {0, 1}
inputs, and which mentions a constant number of monomials.

The substituted linear forms (8 ,8[ 5 ] are linear combinations of copies of ? 5 , so they have a

constant number of variables each and their inference from Mod?E8 ,"[ 5 ] is doable in constant

space, size and degree because of Lemma 5.3.
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Once the equations (8 ,8[ 5 ] are derived, the refutation goes exactly as shown for the case

with no substitution. From this point on the original refutation is linear; applying the trivial

substitution to these proof lines increases the space, degree and size only by constant factors. �

For the sake of self-containment, we give a proof of the implicational completeness of

polynomial calculus. This completes the proof of Lemma 5.2.

Lemma 5.3. Consider a polynomial implication ?1 , . . . , ?; |= ? which is valid over {0, 1} assignments.
Assume all involved polynomials collectively mention 3 variables and have degree O(3); then there is a
PC proof of this implication in degree O(3), space 2

O(3), and size 2
O(3).

Proof. Without loss of generality we assume that all polynomials are in multilinear form. This is

because we can transform any polynomial of degree O(3) between its original and multilinear

version in size and space 2
O(3)

. So each of the polynomials has size at most 2
3
and degree 3. Let


 = {G1 ↦→ E1 , . . . , G3 ↦→ E3} be an assignment; we define �
 as

∏
8(E8G8 + (1 − E8)(1 − G8)), the

polynomial which evaluates to 1 exactly on the assignment 
. We list some useful observations:

Observation (1) is that given the axioms {G8 = E8}8∈[3] and any polynomial @ on variables

G1 , . . . , G3, it is possible to efficiently infer @ − 
(@) = 0. We prove this by induction on the

number of variables. If 3 = 0 then @ = 
(@). Now assume that @ − 
(@) = B + GC − 
(@). If

we have deduced @�G=0 = B − 
(@) and we have the axiom G, we can easily infer GC and then

B + GC − 
(@). If we have deduced @�G=1 (which is B + C − 
(@)) and we have the axiom G − 1,

we can easily infer (G − 1)C and then B + C + (G − 1)C − 
(@) = B + GC − 
(@). This derivation

requires O(3) steps, one per variable, and both size and space are proportional to the number of

monomials in @. The degree is equal to the degree of @ plus 3.

Observation (2) is that for any @ on variables G1 , . . . , G3, we can infer from Boolean axioms the

polynomial �
(@ − 
(@)), for every assignment 
 on such variables. The inference is in degree

O(3), and size and space are 2
O(3)

. It is immediate for the simple case @ = G8 : each �
(G8 − E8)
contains the factor G2

8
− G8 by construction. For any non-trivial @ we apply the inference in

Observation (1), with the caveat that each line is multiplied by �
. The resulting polynomial is

�
(@ − 
(@)).
Observation (3) is that

∑

∈{0,1}3 �
 = 1, and this is an easy induction over 3 (it also follows

from the semantics of polynomials �
).

We now see how to deduce �
? for every assignment 
. For 
 which satisfy ? we derive

�
(? − 0) using observation (2). For 
 which falsify ?, pick any falsified ?8 and deduce both

�
(?8 − 
(?8)) and �
?8 , using observations (2) and multiplication rule, respectively. The sum is

�

(?8), and since 
(?8) is a non-zero field element, we can multiply by
?


(?8) to get �
?.

Having deduced all �
? we can use observation (3) to infer ?. Notice that we did 2
3

inferences (one for each 
), each of them of degree O(3) and each of them in space 2
O(3)

, which

also gives a 2
O(3)

upper bound on size. �

Nowwe have seen that (substituted) Tseitin formulas are easy for polynomial calculus under

determined conditions. Nevertheless we can use the tools from Section 4 to show that even

under such conditions, any refutation requires large space.
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Theorem 5.4 (restatement of Theorem 3.2). For F any field of characteristic ? > 0 there is a family
of :-CNF formulas �= (where : depends on ?) of size O(=) for which SpPCℛ(�= `⊥) = Ω(=) over any
field but which have tree-like PC refutations �= : �= `⊥ over F of size S(�=) = O(= log =) and degree
Deg(�=) = O(1).

Proof. The formula family we consider is based on Tseitin formulas over a family of Ramanujan

graphs of constant degree. This is a family of simple graphs with good expansion properties; a

construction is given in [38]. Consider such a graph � on < vertices: set an arbitrary orientation

on the edges, and consider any " : [<] → F? with

∑
8 "(8) ≠ 0 mod ?.

In Corollary 4.5 of [2], it is claimed that if� is a 3-regular Ramanujan graph for 3 at least some

constant value 3? , then Ts?(�, ") requires refutations of degree Ω(<) in polynomial calculus

over any field of characteristic different from ?.

Polynomial calculus simulates resolution over any characteristic, and the degree of the

simulation is exactly the width of the simulated resolution proof. This implies that resolution

requires width Ω(<) to refute the formula.

Fix : = 23. We apply a XOR substitution on formula Ts?(�, "), and we get a :-CNF formula

on = = 3< variables. Theorem 3.1 implies that any polynomial calculus (or PCR) refutation

requires monomial space Ω(=), under any characteristic.

If the characteristic of the underlying field is ? the upper bound follows by Lemma 5.2. �

6 PCR space lower bounds for Tseitin formulas

In the following exposition we assume that � = (+, �) is a graph with connectivity expansion 2

and " : + → {0, 1} is a Boolean function. We call a pair (�, ") a charged graph, and we say that a

set * of vertices is even (odd) charged if

∑
E∈* "(E) is even (odd). We denote the set of edges

incident to a vertex E by �(E) and extend the notation to sets of vertices. We write 
 to denote the

complementary assignment of 
 obtained by flipping the value of all variables in the domain

dom(
).

Definition 6.1. The charged graph induced by a partial assignment 
 is ((+, � \ dom(
)), �), where

�(E) = "(E) +∑
43E(1 − 
(4)).

Observation 6.2. The formulas Ts((+, � \ dom(
)), �) and Ts(�, ")�
 are equivalent. An assignment

 satisfies the clauses PARITYE,� if and only if the vertex E is isolated and even (as a singleton set) in the
charged graph induced by 
. In that case, we say that the assignment 
 satisfies the vertex E.

Definition 6.3 (non-splitting assignment). A charged graph is non-splitting if all its connected
components of size at most =/2 are even. A partial assignment 
 is non-splitting if the charged
graph induced by 
 is non-splitting.

Observation 6.4. The empty assignment is non-splitting for the charged graph (�, ") if and only if
(�, ") is non-splitting. A connected graph is always non-splitting.

Observation 6.5. Suppose 
 is a partial assignment extending a partial assignment � (or conversely,
� = 
�� for some � ⊆ dom(
)). If 
 is non-splitting, then so is �. In other words, “unsubstituting”
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an edge cannot result in an odd component that has size less than or equal to =/2 because component
sizes can only increase.

The key idea in the resolution space lower bound is that if a proof does not mention many

edges, then it is possible to maintain a satisfiable assignment to the edges the proof mentions.

This satisfiable assignment shifts the charge in the graph so that a contradiction only arises in

vertices that the proof does not mention and leaves enough freedom to keep adding edges to

the assignment unless the proof reaches a space threshold. Thus the proof is unable to derive a

contradiction unless it mentions many edges at once.

The following lemma implements the charge shifting idea.

Lemma 6.6. Let 
 be a non-splitting assignment. Let 4 be an edge. Let � = dom(
) ∪ {4}. If |� | ≤ 2
then we can extend 
 to some non-splitting assignment � such that dom(�) = �.

Proof. Let (�′, �) be the charged graph induced by 
. Let 4 = (D, E). Let � be the connected

component in �′ that contains the vertices D and E. Let 
0 = 
 ∪ {4 ↦→ 0} and 
1 = 
 ∪ {4 ↦→ 1}.
Let (�′′, �0) and (�′′, �1) be the charged graphs induced by 
0 and 
1 respectively. Observe that

�0(�) = �1(�) = �(�), where �(�) =
(∑

E∈+(�) �(E)
)

mod 2 for the vertices +(�) of component

�.

If 4 is not a bridge, i. e., removing the edge 4 from �′ does not disconnect �, then we can

extend 
 to either 
0 or 
1. In this case there is no new component.

If 4 is a bridge, let �′ and �′′ be the components in �′′ that 4 disconnects � into. If �(�)
is even, either both �0(�′) and �0(�′′) are even, in which case we can extend 
 to 
1, or both

�0(�′) and �0(�′′) are odd, in which case we can extend 
 to 
0 reversing both parities. In this

case all new components are even.

Otherwise if �(�) is odd, since 
 is non-splitting, it holds that |� | > =/2. Since |� | ≤ 2, the
graph �′′ has a connected component larger than =/2. The graph �′ cannot have two disjoint

components both larger than =/2, so this large component is a subset of �; either �′ or �′′.
Assume it is �′ without loss of generality. Since � is odd, either �0(�′) is odd and �0(�′′) is
even, in which case we can extend 
 to 
1, or �0(�′) is even and �0(�′′) is odd, in which case we

can extend 
 to 
0 reversing both parities. In this case there is one new odd component, but it is

larger than =/2. �

Corollary 6.7. Let 
 be a non-splitting assignment. Let � be a set of edges. Let � = dom(
) ∪ �. If
|� | ≤ 2 then we can extend 
 to some non-splitting assignment � such that dom(�) = �.

To extend this idea to a PCR lower bound for space, and in particular to the framework of

[18], we need to use assignments that are not only non-splitting but also resilient to flips of the

values of some variables.

Observe that if all the edges along a cycle change their value, the graph induced by the

cycle stays the same. The following definition will let us formalize this property. Recall the

cartesian product notation for sets of assignments, for instance, {
1 , 
1} × {
2 , 
2} is equal to
{
1 ∪ 
2 , 
1 ∪ 
2 , 
1 ∪ 
2 , 
1 ∪ 
2}.
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Definition 6.8 (Flipped assignments). Let 
 be a partial assignment and let Q be a (total)

partition of dom(
). The set of flipped assignments of 
 with respect to Q is the set of assignments

given by

Flip(Q , 
) =
∏
&∈Q
{
�& , 
�&} .

Essentially Flip(Q , 
) is the set of all partial assignments obtained by 
 taking a subset the

partition Q and flipping the coordinates covered by this subset.

Observation 6.9. If 
 is an assignment over a cycle �, then 
 and 
 induce the same charged graph.
Therefore, if Q is a set of edge-disjoint cycles, all the flipped assignments of some assignment 
 with
respect to Q induce the same charged graph.

Theorem 6.10 (Strengthening of Theorem 3.4). Let (�, ") be non-splitting charged graph of maximal
degree 3 with connectivity expansion 2 such that a partition " of � into edge-disjoint cycles of length at
most 1 exists. Then

SpPCℛ(Ts(�, ") `⊥) ≥ 2/41 − 3/8 .

Note that this is a strengthening of Theorem 3.4 since if � is connected then (�, ") is trivially
non-splitting for every ".

Proof. By Theorem 2.7, it is sufficient to build an A-extendible family for A = 2/1 − 3/2. Let ℱ be

the set of all pairs (Q ,ℋ 
) satisfying:

1. Q ⊆ " and |Q| ≤ A.

2. ℋ 
 = Flip(Q , 
), where 
 is any non-splitting assignment over

⋃Q.
Note that Q is a collection of edge-disjoint cycles and everyℋ 


consists of the some non-splitting

assignment 
 and its flips over cycles. Each (Q ,ℋ 
) ∈ ℱ has many different representations,

sinceℋ 
 = ℋ �
whenever � ∈ Flip(Q , 
).

Let us show that ℱ is an extendible family. First, pairs (Q ,ℋ 
) are Q-structured by

construction.

The empty assignment is non-splitting by Observation 6.4. So the family ℱ is not empty

because (∅,ℋ ∅) ∈ ℱ , where ∅ is the empty assignment.

Let us show that the family is closed under restriction. Consider any (Q ,ℋ) ∈ ℱ and

Q′ ⊆ Q. Let 
 ∈ ℋ , and let � be the restriction of 
 to

⋃Q′. By construction 
 is non-splitting,

and restriction preserves the property of being non-splitting as noted in Observation 6.5, so

(Q′,ℋ �) ∈ ℱ . Finallyℋ�Q′ = Flip(Q , 
)�Q′ = Flip(Q′, �) = ℋ �
.

Let us show that the family is closed under extension. Let (Q ,ℋ) ∈ ℱ with |Q| < A and let

? ∈ PARITYE," for some vertex E ∈ + .

Ifℋ satisfies ? we are done; otherwise we will extend a non-splitting assignment associated

withℋ .

Let 
 ∈ ℋ be a non-splitting assignment that does not satisfy ?. Let QE = {� ∈ " | E ∈ �}
be the cycles adjacent to E, and let Q+ = QE \ Q; we will see that Q+ is not empty, but we do not
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need to assume it now. Let� = dom(
)∪⋃Q+. By hypothesis |Q ∪Q+ | < A+ 3/2, and it follows

that |� | < 2. Thus we can apply Corollary 6.7 on 
 and

⋃Q+ to extend 
 to a non-splitting

assignment � over �.

The assignment � disconnects the component {E} and is non-splitting, so it makes the

component {E} even. By Observation 6.2, � satisfies the vertex E. Note that � falsifies the

subclause of ? that mentions variables in

⋃Q, as 
 does not satisfy ?. If for all � ∈ Q+ and
subclauses ?� of ? that mention variables in �, the assignment � either falsified or satisfied

all literals in ?� , then there would be a non-splitting assignment in Flip(Q+ , �) that falsified all

literals in ?. However, this cannot happen as such an assignment would falsify the vertex E,

while keeping its charge the same as the satisfying assignment �.
Thus, there is a cycle � ∈ Q+ that contains one literal of ? that � satisfies and one literal that

� falsifies. Let Q′ = Q ∪ {�} and letℋ ′ = ℋ �
. By construction (Q′,ℋ ′) ∈ ℱ , and assignments

inℋ ′ restricted to � satisfy ?, showing that (Q′,ℋ ′) satisfies the extension condition. �

Theorem 3.4 is somewhat restrictive, in that it requires us to partition all edges in the graph

into short cycles. However, as the following corollary shows, it is enough to partition most of the
edges.

Corollary 6.11. Let (�, ") be a non-splitting charged graph of maximal degree 3 with connectivity
expansion 2 such that a partition " of � into edge-disjoint cycles of length at most 1 and an additional
number of C < 2 edges exist. Then

SpPCℛ(Ts(�, ") `⊥) ≥ (2 − C)/41 − 3/8

Proof. Let � be the graph obtained by removing the C extra edges. Note that the connectivity

expansion of � is at least 2 − C. Corollary 6.7 on page 20 shows that there exists a non-splitting

assignment 
 on �\�. The assignment 
 induces, by Observation 6.2 on page 19, a non-splitting

charged graph (�, �), for some �. By a restriction argument, any PCR refutation of a non-

splitting Tseitin formula on � in space ( can be translated to a PCR refutation of a non-splitting

Tseitin formula on � in space at most (. Theorem 3.4 shows that ( ≥ (2 − C)/41 − 3/8. �

6.1 Application: Grid graphs

There are families of graphs where we actually get matching upper and lower bounds for PCR

space. One such family is square grids. For the following subsection let = be an even integer

and denote ℤ= = ℤ/=ℤ, the integers modulo =. The following defines a grid over a torus.

Definition 6.12 (Grid graph). The grid graph (or discrete torus) )(=) is a 4-regular graph with

vertices + = ℤ= ×ℤ= and edges

� =
{(
(8 , 9), (8 + 1, 9)

)
,
(
(8 , 9), (8 , 9 + 1)

) ��8 , 9 ∈ +}
,

where the sums are over ℤ= . We order the vertices of )(=) lexicographically: (8 , 9) < (:, ;) if
8 < : or 8 = : and 9 < ;. The predecessor of a vertex (8 , 9) ≠ (1, 1), denoted pred(8 , 9), is the vertex
immediately preceding (8 , 9) in this order.
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We will explicitly refer to the edges we need to disconnect a set of vertices from a graph.

This notion is known as edge boundary.

Definition 6.13. Let �(+, �) be a graph and* ⊆ + be a subset of vertices. The edge boundary of

* is the set of edges defined as %4(*) = {(G, H) ∈ � : G ∈ *, H ∉ *}.
We can find an upper bound on PC space by mentioning all the vertices in lexicographical

order.

Lemma 6.14. The space of refuting a Tseitin formula over the = × = grid graph for an odd charge function
" over characteristic 2 is SpPC(Ts()(=), ") `⊥) = O(=).
Proof sketch. Observe that for every set* of vertices it holds that

∑
4∈�(*) 4 ≡

∑
4∈%4 (*) 4 (mod 2)

where �(*) is the set of all edges incident to vertices in* , and that in PC over characteristic 2

this expression corresponds to the polynomial

∑
4∈%4 (*) 4. Thus, we can express

∑
4∈�(*) 4 ≡ "(*)

in space %4(*). If we let *8 9 = {(0, 1) ∈ + | (0, 1) ≤ (8 , 9)}, the edge boundary of any *8 9 is at

most 2= + 1, so the monomial space of each of the polynomials ?8 9 =
∑
4∈%4 (*8 9) 4 − "(*8 9) is at

most 2= + 1 = O(=).
If we show how to derive the polynomials ?8 9 in lexicographical order in O(=) space, we

will be done. And indeed, for any vertex (8 , 9) in the grid graph we can infer the polynomial

@8 9 =
∑
43(8 , 9) 4 − "((8 , 9)) by downloading the 2

3−1
axioms PARITY(8 , 9)," and adding all of them

in constant space. To derive ?8 9 from ?pred(8 9) it is enough to add the polynomials ?pred(8 9) and @8 9 .
The maximum space is Sp(?pred(8 9)) + Sp(?8 9) +O(1) = O(=). �

The connectivity expansion follows from the following isoperimetric inequality.

Theorem 6.15 ([17]). Let* be a subset of vertices of )(=) with |* | ≤ =2/2. Then

|%4(*)| ≥ min{2=, 4|* |1/2} .

Corollary 6.16. The connectivity expansion of )(=) is 2= − 1.

Proof. If we erase 2= − 1 or less edges from )(=), then by Theorem 6.15 the largest region we

can disconnect has size |* | ≤
(
(2= − 1)/4

)
2

< =2/2, so 2 ≥ 2= − 1. If we erase the 2= edges

{((8 , 0), (8 , 1)) | 8 ∈ ℤ=} ∪ {((8 , =/2), (8 , =/2 + 1)) | 8 ∈ ℤ=} we obtain two connected components

of size =2/2, so 2 < 2=. �

The lower bound on PCR space follows.

Corollary 6.17. The space of refuting a Tseitin formula over the = × = grid graph, where = is even, is
SpPCℛ(Ts()(=), ") `⊥) = Ω(=) (over any characteristic).
Proof. Let us find a partition of the edges of )(=). Let �(8 , 9) be the set of edges of the

cycle

(
(8 , 9), (8 + 1, 9), (8 + 1, 9 + 1), (8 , 9 + 1)

)
. Then the set " = {�(8 , 9) | 8 + 9 ≡ 0 (mod 2)}

is a partition of the edges of )(=) into edge-disjoint cycles of length 4. By Theorem 6.10,

SpPCℛ(Ts()(=), ") `⊥) ≥ (2= − 9)/16. �

Theorem 6.18. The space of refuting a Tseitin formula over the = × = grid graph for an odd charge
function " over characteristic 2 is SpPCℛ(Ts()(=), ") `⊥) = Θ(=).
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6.2 Application: Triangulations

Given a graph with good expansion, we can add a few edges to it and obtain a new graph whose

Tseitin formula we can prove to be hard for PCR space. We already showed in Section 4 how to

use a XOR substitution to obtain such a multi-graph; the following subsection shows how to

obtain a simple graph. The proposed method is to convert every edge into a triangle, and a

greedy strategy is enough as the following lemma shows.

Lemma 6.19. Let � be a simple graph of order =, size < and maximal degree 3. If ) is an integer such
that )(= − 43 − 2() + 1)) ≥ < then there exists a simple graph � of maximal degree at most 23 + 2)

which is a supergraph of � whose edges can be partitioned into edge-disjoint triangles.

Proof. Consider the algorithm that iteratively chooses any edge (G, H) not yet handled, chooses a
vertex I not adjacent to any of the endpoints of minimal degree, and adds the two remaining

edges (G, I) and (H, I) from the endpoints to the vertex.

We consider the new edges to be directed (from G and H to I) and the indegree and outdegree to
refer to new edges only. The degree of a vertex is thus the sum of its initial degree, its indegree

and its outdegree. Observe that at every step the outdegree of every vertex is at most its initial

degree, which is at most 3. When choosing the vertex I, we will choose the vertex of minimal

indegree.
Assume that at some state ( of the execution of the algorithm the maximal indegree is 2C.

We claim that the algorithm handles at least the next = − 43− 4(C + 1) edges without the indegree

exceeding 2(C + 1).
Indeed, consider the :-th edge (G, H) the algorithm visits after state ( for : ≤ = − 43− 4(C + 1).

Its endpoints are connected to at most 3 + 2(C + 1) + 3 vertices each, which we discard as

candidates for I, and at most : − 1 vertices increased their indegree to 2(C + 1). There remain

at least = − 43 − 4(C + 1) − : + 1 ≥ 1 potential vertices of indegree at most 2C, and the greedy

algorithm chooses one of these.

The initial indegree of all vertices is 0. After handling all < edges, the maximal indegree

increases at most ) times, where ) is such that

< ≤
)−1∑
C=0

(= − 43 − 4(C + 1)) = )(= − 43 − 2() + 1)) . (6.1)

�

In particular, if 3 ≤ =/4 −
√

2</2 − 1/2 such a ) exists, and if 3 = o(=) the inequality (6.1)

holds asymptotically for ) =
⌈
3+1

2

⌉
. The lower bound on space follows by applying theorem

Theorem 2.7 to the resulting supergraph and noting that the connectivity expansion cannot

decrease.

Theorem 6.20. Let � be a simple graph of maximal degree 3 = o(=) and connectivity expansion 2.
There exists a simple graph � of maximal degree at most 33 + 2 which is a supergraph of � such that the
space of refuting a Tseitin formula over � is at least SpPCℛ(Ts(�, ") `⊥) ≥ 2/12 − (33 + 2)/8.
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7 Cycle partitions of random regular graphs

7.1 Models of random regular graphs

Let %= be a sequence of probability spaces. A sequence of events �= on %= holds asymptotically
almost surely if Pr[�=] −→ 1. In the sequel, we often abuse notation and say that an event is true

asymptotically almost surely in a probability space, when we actually mean sequences of both.

The probability space will depend on a parameter =.

Two probability spaces are contiguous if every event which holds asymptotically almost

surely in one also holds asymptotically almost surely in the other; we will use the notation � ≈ �
to denote that � and � are contiguous. Let D3 be the uniform probability space of random

3-regular graphs on = vertices, ℋ +ℋ be the probability space of unions of (not necessarily

disjoint) randomHamilton cycles on = vertices, andℋ ⊕ℋ be the probability space of unions of

edge-disjoint random Hamilton cycles on = vertices;ℋ ⊕ℋ is obtained by conditioningℋ +ℋ
upon the event that the two random Hamilton cycles are edge-disjoint. Note thatℋ +ℋ is a

probability space on multi-graphs. Kim and Wormald [34] proved the following theorem (see

also Wormald’s survey [45] and [33, §9.3–9.6]).

Theorem 7.1. We haveD4 ≈ ℋ ⊕ ℋ .

We will need one more fact from [34], whose proof we only sketch.

Lemma 7.2. If � ∼ ℋ +ℋ then Pr[� is simple] −→ e
−2.

Proof sketch. Fix the first Hamilton cycle �1. Let 48 be the (random) 8th edge of the second

Hamilton cycle �2. It is easy to see that Pr[48 ∈ �1] = 2/(= − 1), hence E[|�1 ∩ �2 |] −→ 2.

Moreover, one can show using Brun’s sieve (for example [3, Theorem 8.3.1]) that the distribution

of |�1 ∩ �2 | is asymptotically Poisson; the required calculations are sketched in [34, §2(iii)].

Hence Pr[|�1 ∩ �2 | = 0] −→ e
−2
. �

Putting both facts together, we get the following result which will serve as our vantage point

over random 4-regular graphs.

Lemma 7.3. Suppose � is an event which holds asymptotically almost surely inℋ +ℋ . Then � also
holds asymptotically almost surely for random 4-regular graphs.

Proof. Lemma 7.2 shows that � holds asymptotically almost surely inℋ ⊕ℋ , and so inD4 by

Theorem 7.1. �

Corollary 7.4. A random 4-regular graph is connected asymptotically almost surely.

7.2 Expansion properties of random regular graphs

For a graph � = (+, �) and a subset * of the vertices, recall that %4(*) is the set of edges

connecting * and + \* . We say that the graph � is a �-edge expander if for every set * of at

most |+ |/2 vertices, |%4(*)| ≥ � |* |. Bollobás [16] proved that random regular graphs are good

expanders, as stated next for degree-4 graphs.
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Theorem 7.5. There is a constant 21 such that asymptotically almost surely, a random 4-regular graph is
a 21-edge-expander.

In fact, we can choose any 21 < 2(1 − �) ≈ 0.4401, where � is the unique positive solution of

(1 − �)1−�(1 + �)1+� = 2. In particular, asymptotically almost surely a random 4-regular graph is

a 0.44-edge-expander.

The following lemma shows that bounds on standard edge expansion imply bounds on

connectivity expansion, defined in Definition 2.3.

Lemma 7.6. The connectivity expansion of a 2-edge-expander graph on = vertices is at least 2=/4.

Proof. Suppose � has connectivity expansion B. There is a set, of B edges and an edge 4 such

that � \, has a component of size larger than =/2, but � \ (, ∪ {4}) has no component of size

larger than =/2. Since 4 breaks the giant component into two components, � \ (, ∪ {4})must

have a component* of size larger than =/4. Expansion shows that |%4(*)| ≥ 2 |* | > (2/4)=, and
so B = |, | ≥ (2/4)=. �

The fact that random graphs are good connectivity expanders follows as a consequence of

the two previous results.

Corollary 7.7. There is a constant 22 such that asymptotically almost surely, the connectivity expansion
of a random 4-regular graph on = vertices is at least 22=.

7.3 Simple lower bound

In this section we prove that refuting a non-splitting Tseitin formula on a random 4-regular

graph on = vertices requires spaceΩ
(√
=/log =

)
, asymptotically almost surely over the choice of

the graph.

The idea is to prove that asymptotically almost surely, a random 4-regular graph on = vertices

can be partitioned into cycles of length O

(√
= log =

)
. Note that every Eulerian graph can be

partitioned into cycles, and what we need to show is that the cycles are short. In order to prove

that, it will be useful to consider a model related toℋ +ℋ .

Let [=] = {1, . . . , =}, and let (= be the set of all permutations on [=]. Every permutation

� ∈ (= determines a Hamilton cycle

�(�) = (�(1),�(2)), (�(2),�(3)), . . . , (�(= − 1),�(=)), (�(=),�(1)) . (7.1)

(The cycle is undirected.) Let � denote the identity permutation. We will consider the probability

spaceℋ(�) + ℋ(�) formed by taking the union of �(�) and �(�), where � is chosen uniformly

at random from (= .

The idea of the proof is to divide [=] into
√
=/log = blocks of length

√
= log =. We will show

that asymptotically almost surely, each block �: contains a point C: such that B: = �(C:) ∈ �: . For
any two adjacent blocks �: , �:+1, we can form a cycle of length O

(√
= log =

)
by pasting together

the path from B: to B:+1 in �(�) and the path from �(C:) to �(C:+1) in �(�), both of which
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sk sk+1

tk tk+1

H(ι)

H(π)

π

Pπk

P ιk

G

Ck = P ιk ∪ Pπk

Figure 2: One block of the decomposition of a random regular graph into short cycles. We

obtain �: by identifying the vertices of �(�)with the vertices of �(�) according to �.

are shorter than 2

√
= log =. As a result, the graph decomposes into

√
=/log = cycles of length

O

(√
= log =

)
. See Figure 2 for an illustration.

Let < be a parameter depending on =; in this section, we choose < =
√
= log =, while in the

next section, we choose < = �
√
=. For simplicity, we assume that < and =/< are both integers.

We partition [=] into =/< blocks �1 , . . . , �=/< of size <: �: = {(: − 1)< + 1, . . . , (: − 1)< + <}.
Let �: be the event that �(�:) ∩ �: = ∅. We think of �: as a bad event, and our goal in this section

is to show that asymptotically almost surely, none of the �: happen. In order to show this, we

estimate the probability that �: happens.

Lemma 7.8. For : ∈ [=/<], Pr[�:] ≤ e
−<2/= .

Proof. Using 1 − G ≤ e
−G
, we calculate

Pr[�:] =
<−1∏
8=0

(
1 − <

= − 8
)
≤

(
1 − <

=

)<
≤ e
−<2/= . (7.2)

�

If �: holds, we define C: to be the first point in �: such that �(C:) ∈ �: , and let B: = �(C:).

Lemma 7.9. Suppose �: and �:+1 both hold (indices taken modulo =/<). Define a (possibly self-
intersecting) cycle �: by taking two paths % �

:
, %�

:
from B: = �(C:) to B:+1 = �(C:+1), one from each of

the two Hamilton cycles:

% �
:
= (B: , B: + 1), (B: + 1, B: + 2), . . . , (B:+1 − 1, B:+1) ,

%�
:
= (�(C:),�(C: + 1)), (�(C: + 1),�(C: + 2)), . . . , (�(C:+1 − 1),�(C:+1)) .

The length of �: is at most 4<.
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Proof. Assume for simplicity that : ≠ =/<. Then B: , C: ≥ (: − 1)< + 1 and B:+1 , C:+1 ≤ :< + <.

The length of �: is (B:+1 − B:) + (C:+1 − C:) ≤ 4< − 2. �

If none of the bad events happen, then the cycles �1 , . . . , �=/< cover all of the graph: by

construction {% �
:
}: partitions �(�), while {%�

:
}: partitions �(�). Choosing < accordingly, we

can ensure that this happens asymptotically almost surely.

Lemma 7.10. Let< =
√
= log =. Asymptotically almost surely, a graph chosen according toℋ(�)+ℋ(�)

decomposes into =/< cycles of length at most 4<.

Proof. According to Lemma 7.8, for each : ∈ [=/<], Pr[�:] ≤ e
− log = = 1/=. A union bound

shows that asymptotically almost surely, none of the �: happen. Lemma 7.9 shows that the

graph decomposes into =/< cycles of length at most 4<. �

The lemma easily implies the lower bound.

Theorem 7.11. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula on
a random 4-regular graph on = vertices is Ω

(√
=/log =

)
.

Proof. By a symmetry argument, Lemma 7.10 implies that asymptotically almost surely, a graph

chosen according toℋ +ℋ decomposes into cycles of length at most 4

√
= log =. Corollary 7.7

shows that asymptotically almost surely, the connectivity expansion of the graph is at leastΩ(=).
Corollary 7.4 shows that asymptotically almost surely, the graph is connected, and so the Tseitin

formula is non-splitting. Hence Theorem 3.4 gives a lower bound of Ω(
√
=/log =). �

7.4 Improved lower bound

In this section we improve the results of Section 7.3 by showing that refuting a non-splitting

Tseitin formula on a random 4-regular graph on = vertices requires spaceΩ
(√
=
)
, asymptotically

almost surely over the choice of the graph.

We use the general method of Section 7.3, with a different choice of <, namely < = �
√
= for

some constant � to be determined later. Thinking of �: as an indicator variable, let � =
∑=/<
:=1

�: .

Lemma 7.8 shows that E[�] ≤ e
−�2(=/<). We will show that asymptotically almost surely,

� ≤ 2e
−�2(=/<). This implies that the cycles �: together cover most of the graph, and therefore

Corollary 6.11 applies. The difficult part of the proof is showing that � is concentrated around

its mean.

Let ? = Pr[�:] (all the probabilities are the same). We need the following strengthening of

Lemma 7.8.

Lemma 7.12. Let ? = Pr[�:], where �: is the event that �: ∩ �(�:) = ∅. As = −→ ∞, we have that
? −→ e

−�2 .

In order to show that � is concentrated around its mean, we show that for : ≠ ;, the events

�: and �; are asymptotically negatively correlated.
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Lemma 7.13. For every : ≠ ; ∈ [=/<], Pr[�: ∧ �;] ≤ ?2 + o(1).

We prove both lemmas below, but first, let us see how they imply the desired result. The

idea is that since any two bad events are asymptotically negatively correlated, the variance of �

is small, and so Chebyshev’s inequality shows that � is concentrated around its mean.

Lemma 7.14. Asymptotically almost surely, � ≤ 2e
−�2(=/<).

Proof. We have E[�] = (=/<)? and

Var(�) = E[�2] − (E[�])2

= (=/<)? + (=/<)(=/< − 1)(?2 + o(1)) − (=/<)2?2

= (=/<)?(1 − ?) + o

(
(=/<)2

)
,

using Lemma 7.13. Chebyshev’s inequality shows that

Pr[|� − E[�]| > E[�]] ≤ Var(�)
E[�]2 ≤

(=/<)? + o

(
(=/<)2

)
(=/<)2?2

= o(1) , (7.3)

since ? = Ω(1) by Lemma 7.12. Therefore asymptotically almost surely, � ≤ 2 E[�] = 2(=/<)? ≤
2e
−�2(=/<), using Lemma 7.8. �

The preceding lemma shows that the fraction of bad indices (indices : such that �: holds) is

small. Say that a block �: is good if �: and �:+1 both hold, and say that it is supergood if both �:−1

and �: are good. Lemma 7.9 associates a cycle �: with each good block �: . If �: is supergood,

then the cycles �:−1 and �: together cover the entire stretch of �: , as the following lemma shows.

Lemma 7.15. Suppose that block �: is supergood. Then the union of the cycles �:−1 , �: given by
Lemma 7.9 contains the path of length < from min �: to min �:+1 in �(�), as well as the path of length <
from �(min �:) to �(min �:+1) in �(�).

Proof. The cycle �:−1 contains the path from B:−1 < min �: to B: in �(�). The cycle �: contains
the path from B: to B:+1 ≥ min �:+1 in �(�). Both paths together cover the path from min �: to

min �:+1 in �(�). The argument for �(�) is identical. �

We can now prove an analogue of Lemma 7.10.

Lemma 7.16. Let < = �
√
=. Asymptotically almost surely, a graph chosen according toℋ(�) + ℋ(�)

decomposes into cycles of length at most 4< and C additional edges, where C ≤ 8e
−�2

=.

Proof. Lemma 7.14 shows that asymptotically almost surely, all but 4e
−�2(=/<) of the =/<

blocks �1 , . . . , �=/< are supergood, as each bad block prevents two blocks from being supergood.

Let C be the (disjoint) union of all cycles �: constructed using Lemma 7.9 for all supergood

blocks �: . The lemma shows that each cycle has length at most 4<. Lemma 7.15 shows that C
contains all but at most 8e

−�2

= edges of the graph. �

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 29

http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

Replacing Theorem 3.4 with its corollary, Lemma 7.16 easily implies the lower bound.

Theorem 7.17. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula on
a random 4-regular graph on = vertices is Ω

(√
=
)
.

Proof. Corollary 7.7 shows that asymptotically almost surely, the connectivity expansion of

the graph is at least 22= for some constant 22. Lemma 7.16 implies that asymptotically almost

surely, a graph chosen according to ℋ +ℋ decomposes into cycles of length at most 4�
√
=

and C additional edges, where C ≤ 8e
−�2

=. For an appropriate choice of � we have C ≤ (22/2)=.
Corollary 7.4 shows that asymptotically almost surely, the graph is connected, and so the Tseitin

formula is non-splitting. Hence Corollary 6.11 gives a lower bound of Ω
(√
=
)
. �

7.4.1 Technical lemmas

We now turn to the proofs of Lemma 7.12 and Lemma 7.13. We start with the former.

Proof of Lemma 7.12. It is easy to check that for 0 ≤ G ≤ 1/2, 1 − G ≥ e
−G−G2

. Therefore for large

enough =,

? =

<−1∏
8=0

(
1 − <

= − 8
)
≥

(
1 − <

= − <
)<
≥ exp

[
− <2

= − < −
<3

(= − <)2

]
. (7.4)

For large enough =, < ≤ =/2, and so <2/(= − <) = <2/= + <3/(=(= − <)) ≤ <2/= + 2<3/=2
.

Similarly, <3/(= − <)2 ≤ 4<3/=2
. Therefore, using e

−G ≥ 1 − G,

? ≥ exp

[
−<

2

=
− 6

<3

=2

]
= exp

[
−�2 − 6�3

√
=

]
≥ e
−�2

(
1 − 6�3

√
=

)
. (7.5)

Hence lim inf ? ≥ e
−�2

. Lemma 7.8 shows that also lim sup ? ≤ e
−�2

. �

The proof of Lemma 7.13 is more involved. Recall that the lemma claims that the events �:
and �; are asymptotically negatively correlated. In fact, they are asymptotically uncorrelated.

Recall that Pr[�:] is roughly equal to e
−�2

. Given the value of � on �: , the probability Pr[�;]
depends on |�(�:) ∩ �; |. Typically, this intersection will be very small, and so Pr[�;] is also
roughly equal to e

−�2

.

Wewill show that |�(�:)∩ �; | is typically small using an extension of the well-knownChernoff

bound due to Kabanets and Impagliazzo [31, Theorem 1.1], attributed there to Panconesi and

Srinivasan [42].

Theorem 7.18. Let-1 , . . . , -A be Boolean random variables such that for any set ( ⊆ [A], Pr[∧8∈( -8] ≤
� |( |. Then for � ≥ �,

Pr

[
A∑
8=1

-8 ≥ �A

]
≤ e
−2A(�−�)2 .
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The following lemma applies this bound to our situation (in an abstracted version).

Lemma 7.19. Let 0, 1, 2 be integers such that 0 ≥ 1, 2, and let ) be a random subset of [0] of size 1. For
all � ≥ 1,

Pr[|) ∩ [2]| ≥ �(12/0)] ≤ e
−22(�−1)2(1/0)2 .

Proof. For 8 ∈ [2], let -8 be the event that 8 ∈ ). For ( ⊆ [2] such that |( | ≤ 1,

Pr

)
[( ⊆ )] =

(0−|( |
1−|( |

)(0
1

) =

|( |−1∏
:=0

1 − :
0 − : ≤

(
1

0

) |( |
. (7.6)

Therefore we can apply Theorem 7.18 with A = 2, � = 1/0 and � = �(1/0). �

We can now prove Lemma 7.13.

Proof of Lemma 7.13. We will show that Pr[�; | �:] ≤ ? + o(1). This implies that Pr[�: ∧ �;] =
Pr[�:]Pr[�; | �:] ≤ ?(? + o(1)) = ?2 + o(1).

Assuming the event �: happens, �(�:) is a random subset of [=] \ �: of size <. Plugging

0 = = − < and 1 = 2 = < in Lemma 7.19, we deduce that for all � ≥ 1 and large enough =

Pr[|�(�:) ∩ �; | ≥ ��2 | �:] ≤ e
−2(�−1)2<(</(=−<))2

(7.7)

≤ e
−2(�−1)2<3/=2

= e
−2�3(�−1)2/

√
= . (7.8)

Hence with probability 1 − o(1) given �: , � , |�(�:) ∩ �; | ≤
√
< log<. Now

Pr[�; | � = 3] =
<−1∏
8=0

(
1 − < − 3

= − < − 8

)
≤

(
1 − < − 3

=

)<
≤ e
−<(<−3)/= . (7.9)

For 0 ≤ G ≤ 1, one can check that e
G ≤ 1 + 2G. Hence

Pr[�; | � ≤
√
< log<] ≤ e

−<(<−
√
< log<)/=

(7.10)

= e
−�2+<

√
< log</= ≤ e

−�2

(
1 +

2<
√
< log<

=

)
. (7.11)

Using Lemma 7.12, we deduce that Pr[�; | � ≤
√
< log<] ≤ e

−�2 +o(1) = ?+o(1). We conclude

that Pr[�; | �:] = ? + o(1) and so Pr[�: ∧ �;] = ?2 + o(1). �
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7.5 Regular graphs of degree larger than four

Wormald [45, Corollary 4.17] showed that when 3 > 4, a random 3-regular graph can be

obtained (up to contiguity) by taking the disjoint union of a random 4-regular graph and a

random (3 − 4)-regular graph, a result summarized in the following theorem (see also [33,

Corollary 9.44]).

Theorem 7.20. For 3 > 4 we have D3 ≈ D4 ⊕ D3−4. Furthermore, the probability that a uniformly
random 4-regular graph and a uniformly random (3 − 4)-regular graph do not intersect tends to a positive
constant.

ATseitin formula on a random 3-regular graph generated according toD4⊕D3−4 is harder to

refute than a Tseitin formula on a random4-regular graph, and sowe can generalize Theorem 7.17

to random 3-regular graphs for arbitrary 3 ≥ 4.

Theorem 7.21 (restatement of Theorem 3.5). Let 3 ≥ 4. Asymptotically almost surely, the space
required to refute in PCR any Tseitin formula on a random 3-regular graph on = vertices is Ω

(√
=
)
.

Proof. If 3 = 4 then Theorem 7.17 already applies, so assume 3 > 4. Let �1 be a random 4-regular

graph, and let �2 be a random (3 − 4)-regular graph. The graph � = �1 + �2 is distributed

according toD4 + D3−4. We show below that asymptotically almost surely, the space required

to refute in PCR any Tseitin formula on � is Ω
(√
=
)
. Since �1 and �2 are disjoint with constant

probability according to Theorem 7.20, the theorem follows.

Let 
 be an arbitrary assignment to the edges of �2. Observation 6.2 on page 19 shows that

for every function 5 , Ts(�, ")�
 = Ts(�1 , �) for some other function �. By a restriction argument,

any PCR refutation of Ts(�, ") in space ( can be translated to a PCR refutation of Ts(�1 , �) in
space at most (. Theorem 7.17 on page 30 shows that asymptotically almost surely, we must

have ( = Ω
(√
=
)
. �

8 Bonacina–Galesi framework and the Functional Pigeonhole Princi-
ple

We now discuss the intrinsic limitations of the techniques employed so far. In Section 8.1 we

show that Bonacina–Galesi framework does not allow to prove PCR space lower bounds for an

interesting formula like functional pigeonhole principle. In Section 8.2 we show that restricting

to PC does not make the problem easier.

8.1 FPHP formulas do not have Extendible families

One of the limits of the Bonacina–Galesi framework is that we cannot apply it to formulas

for which fixing a small set of variables causes a lot of unit clause propagation. Indeed, most

of the lower bound strategies in this paper aim to control this phenomenon (see for example

Lemma 4.3). For the functional pigeonhole principle these strategies do not work, as we now

prove.

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 32

http://dx.doi.org/10.4086/toc


TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Definition 8.1. The functional pigeonhole principle on < pigeons and = holes is the formula

defined on variables G8 9 for 8 ∈ [<] and 9 ∈ [=], made of the following clauses:∨
9∈[=]

G8 9 for all 8 ∈ [<]; (pigeon axioms)

¬G8 9 ∨ ¬G8′ 9 for any 8 ≠ 8′ ∈ [<] and 9 ∈ [=]; (hole axioms)

¬G8 9 ∨ ¬G8 9′ for any 8 ∈ [<] and 9 ≠ 9′ ∈ [=]. (functional axioms)

It is already known that this formula requires large space in resolution [13, 4]. Thanks to [28]

we know that this formula needsΩ(
√
=)monomial space as well. We suspect that the true lower

bound is actually Ω(=), however the Bonacina–Galesi framework is not strong enough to prove

it. That framework cannot even prove a non constant lower bound for functional pigeonhole

principle.

Theorem 8.2 (restatement of Theorem 3.6). There is no A-extendible family for FPHP<= for A > 1.

Proof. Assume that there is an A-extendible family ℱ for the formula FPHP<= which respects

some satisfiable �′ ⊆ FPHP<= , for A > 1.

Let � be any clause in FPHP<= \ �′; such clause exists because FPHP<= is a contradiction. The

extension property of ℱ implies that there is a pair ({&1}, �1) ∈ ℱ , where �1 satisfies �.

Recall that 0 encodes true, and 1 encodes false. Pick a variable G8 9 in &1. In �1 there is at

least one partial assignment for which G8 9 = 0, and for any such assignment it holds that G8′ 9 = 1

and G8 9′ = 1 for all 8′ ≠ 8 and 9′ ≠ 9, otherwise an initial clause would be false.

Indeed, fix E to be any of these variables (either G8′ 9 or G8 9′); the clause ¬G8 9 ∨ ¬E is an axiom.

If E ∉ &1 then this clause is not in �′ because of the respectfulness of ℱ , and furthermore there

is at least one assignment in �1 which does not satisfy it (i. e., any assignment with G8 9 = 0). The

extension property of ℱ guarantees that there is ({&1 , &2}, �1 ×�2) ∈ ℱ with E ∈ &2, such that

�1 × �2 satisfies ¬G8 9 ∨ ¬E. But this contradicts the fact that �1 × �2 contains the assignment

{G8 9 = 1, E = 1}, which falsifies ¬G8 9 ∨ ¬E.
It follows that {G8′ 9 , G8 9′ | 8′ ≠ 8 and 9′ ≠ 9} ⊆ &1, and that �1 satisfies all axioms in-

volving either pigeon 8 or hole 9. We have just shown that assuming some G8 9 ∈ &1, we

get {G8′ 9 , G8 9′ | 8′ ∈ [<], 9′ ∈ [=]} ⊆ &1. This choice was arbitrary, so it follows that for any

8 ∈ [<], 9 ∈ [=], the variable G8 9 is in &1. In other words, &1 contains all the variables. Since

FPHP<= \ �′ is contradictory, every assignment in �1 falsifies some clause, and so the extension

property fails for any such clause. We conclude that FPHP<= has no 2-extendible family. �

8.2 Formulas with equal PC and PCR space complexities

Although finding an A-extendible family for the functional pigeonhole principle (and hence

proving a linear space lower bound) is not feasible, we might try and prove a weaker PC

space lower bound. However, as we have pointed out in Section 3.4, in the case of functional

pigeonhole principle this makes no difference. In this section, we prove formally this result for a

broader class of formulas that is captured by the following definition.
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Definition 8.3. We say that a CNF formula � is totally weight constrained if for every variable G

appearing in � there exists a clause �G ∈ � with the following properties:

1. All literals in �G are positive;

2. G is one of the variables appearing in �G ;

3. For every two distinct variables H, I appearing in �G , clause H ∨ I is in �.

For each variable G we refer to �G as the G-neighborhood clause.

In such formulas each negative literal can be replaced with a clause/monomial consisting of

only positive literals that has the same semantic meaning. Thus, we can turn a PCR refutation

into a PC refutation without any substantial loss of space. In order for us to be able to show that

such a refutation is a valid PC refutation we need to show that there are PC derivations of these

monomials that use small space.

Theorem 8.4. For a totally weight constrained CNF formula �, where each clause has a constant number
of negative literals, it holds that Sp%�(� `⊥) = Θ(Sp%�'(� `⊥)).

Proof. We can easily see that PCR simulates PC with only a constant loss in space. The only

problem in the simulation could arise when downloading an axiom that has negative literals.

Nevertheless, it is not hard to prove that PCR can expand every axiom to its PC form while

respecting the stated space bound.

In the other direction, we prove that PC can simulate a PCR refutation of �. Let � be a PCR

refutation of � in space at most B. As � is a totally weight constrained formula, for every variable

G we can fix its G-neighborhood clause �G . Let us denote by #(G) the set of variables from �G
excluding G. We transform the PCR refutation � into a PC refutation by replacing each negative

literal G with the monomial

∏
H∈#(G) H. Obviously this transformation preserves space and we

need to show that the transformed configurations form a backbone of a valid PC refutation.

If the PCR refutation deletes a polynomial, we delete the appropriate transformed polynomial

from the configuration in the PC refutation. Similarly, in the case of linear combination steps we

just deduce the linear combination of the transformed polynomials. Hence, these two types of

steps can be done without any loss in space. In the case of multiplication with a literal, if the

literal is positive we multiply the appropriate transformed polynomial with the same literal.

Otherwise, the literal is negative and we multiply the polynomial with all the variables in #(G),
where G is the literal, while making sure to delete the intermediate polynomials when they are

no longer needed. In this way we derive the transformed polynomial in at most O(B) space.
The axiom download steps are the only ones that remain. In the case of Boolean axiom

download, if we downloaded an axiom for a positive literal, we just download the appropriate

axiom in the PC refutation. Otherwise, the Boolean axiom corresponds to some negative literal

G and we need to derive the polynomial

∏
H∈#(G) H

2 −∏
H∈#(G) H. This is done by downloading

the Boolean axioms for each H ∈ #(G) and combining them to get the transformed polynomial.

Let �2 − � be one of the intermediate polynomials in the derivation of the transformed Boolean

axiom, where � is a monomial formed by multiplying the variables in some subset of #(G).
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Then, for some variable H not mentioned in �, we derive (�H)2 − �H by downloading H2 − H and

taking the linear combination of H(�2 − �) and �2(H2 − H). This PC derivation uses O(1)more

monomials than the PCR axiom download.

When the PCR proof downloads the complementarity axiom 1 − G − G, the corresponding
PC proof needs to derive the polynomial 1 − G −∏

H∈#(G) H. Let #(G) = {H1 , . . . , H;}. We derive

the transformed polynomial by successively deriving polynomials

)(8) =
;∏

:=8+1

H: − G
;∏

:=8+1

H: −
∏
:

H: , (8.1)

for 8 = 1, . . . , ;. Note that )(;) is our transformed polynomial. The first )(1) in the PC proof can

be derived by downloading the axiom (1− G)(1− H1) and multiplying it with variables H2 , . . . , H;
in order to get )(1) + G∏

: H: . Subtracting from it the G-neighborhood clause �G = G
∏

: H: we

get )(1).
We proceed to derive )(8 + 1) from )(8) for all 8. Similarly as before, we start by downloading

the axiom (1−G)(1−H8+1) andmultiplying itwith variables H8+2 , . . . , H; in order to get)(8+1)−)(8).
Adding this polynomial to )(8)we derive the (8+1)st polynomial )(8+1) in our derivation of the

transformed complementarity axiom. This PC derivation uses O(1)more monomials than the

PCR proof and all axioms of the form (1− G)(1− H8) exist because � is totally weight constrained.

In the case of axiom download step for a clause axiom, we again have two cases. If all literals

of the axiom are positive we download the corresponding axiom in the PC proof. Otherwise,

we can write the axiom as G1 · · · GB · GB+1 · · · G; , where B is the number of its negative literals. Let

us denote by �(8) the polynomial

�(8) =
∏

H1∈#(G1)
H1 · · ·

∏
H8∈#(G8)

H8(1 − G8+1) · · · (1 − GB)GB+1 · · · G; , (8.2)

where 8 ranges over 0, . . . , B. Note that �(0) is the original PC axiom, while �(B) is the

transformed axiom that we want to derive. Also, let us denote by '(8) the polynomial

'(8) =
∏

H1∈#(G1)
H1 · · ·

∏
H8−1∈#(G8−1)

H8−1 · (1 − G8+1) · · · (1 − GB)GB+1 · · · G; , (8.3)

for 8 ranging from 1 to B, that is �(8) = '(8)∏H8∈#(G8) H8 = '(8 + 1)(1 − G8+1).
We first derive �(1) by deriving the transformed complementarity axiom 1−G1−

∏
H1∈#(G1) H1

for the variable G1 and multiplying it with '(1) in order to get �(0) −�(1). Now we can get �(1)
by subtracting the derived polynomial from the PC axiom �(0).

We proceed to derive �(B) by deriving �(8 + 1) from �(8) for all 8 from 1 to B − 1. This is

again done by first deriving the appropriate complementarity axiom 1 − G8+1 −
∏

H8+1∈#(G8+1) H8+1

and multiplying it by '(8 + 1) in order to get �(8) −�(8 + 1). Subtracting the derived polynomial

from previously derived �(8), we get the (8 + 1)st polynomial in our derivation. These steps use

O(2B)monomials, which is constant by the theorem hypothesis, and the PC derivation of the

transformed axiom uses at most O(1)monomials more than the PCR axiom download step.
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Hence, the theorem follows. Also, although we have ignored the constants involved in

the simulation, these constants can be computed explicitly and are small. The only possible

exception is the additive constant O(2B∗), where B∗ is the largest number of negative literals in a

clause of �. �

An obvious example of the totally weight constrained formula is the functional pigeonhole

principle.

Corollary 8.5 (restatement of Theorem 3.7). It holds that

Sp%�'(FPHP<= `⊥) = Θ(Sp%�(FPHP<= `⊥)) .

Proof. It is easy to see that FPHP<= formula is totally weight constrained, as every variable

appears in some pigeon axiom that is constrained by the functional axioms. Also, FPHP<=
has at most 2 negative literals in each clause and hence we have that Sp%�'(FPHP<= ` ⊥) =
Θ(Sp%�(FPHP<= `⊥)). �

Actually, we can say even more about the space complexity of the functional pigeonhole

principle formulas. In [27], the authors prove that the PCR space complexity of FPHP<= is equal

(up to constant factors) to the PCR space complexity of the extended formula
�FPHP<= , where�FPHP<= is the canonical equivalent 3-CNF version6 of the formula FPHP<= . Hence, we have that

the PC space complexity lower bound for FPHP<= would actually lower bound the PCR space

complexity of
�FPHP<= .

This holds in greater generality for totally weight constrained formulas that also fulfill

the following technical condition: � is a weight-constrained CNF formula if for each clause

01 ∨ 02 ∨ . . . ∨ 0< of � with more than three literals, the formula also contains clauses ¬08 ∨ ¬0 9
for all 1 ≤ 8 < 9 ≤ <. We stress the fact that the conditions of being weight-constrained and

totally weight constrained are incomparable.

Corollary 8.6. For a simultaneously weight-constrained and a totally weight constrained formula �,
where each clause has a constant number of negative literals, it holds that

Sp%�'(�̃ `⊥) = Θ(Sp%�'(� `⊥)) = Θ(Sp%�(� `⊥)) .

9 Concluding remarks

In this paper, following up onwork in [8, 18, 27, 30], we report further progress on understanding

space complexity in polynomial calculus and how the space measure is related to size and

degree. Specifically, we separate size and degree from space, and provide some circumstantial

evidence for the conjecture that degree might be a lower bound on space in polynomial calculus

6We substitute every clause 0
1
∨ 0

2
∨ . . . ∨ 0: , which has more than three literals, with the formula (0

1
∨ H

1
) ∧

(¬H
1
∨ 0

2
∨ H

2
) ∧ . . . ∧ (¬H8−1

∨ 08 ∨ H8) ∧ . . . ∧ (¬H:−1
∨ 0:) where for each substituted clause all variables H8 are

new. The substituted formula is a 3-CNF and it is satisfiable if and only if the original one is. It is also easy to deduce

the original clause from the substituting formula.
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(PC) and polynomial calculus resolution (PCR), where PCR is a strengthening of PC with

separate formal dual variables for negated literals (making PCR more suited to the study of

space complexity). We also prove space lower bounds for a large class of Tseitin formulas, a

well-studied formula family for which nothing was previously known regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs are not optimal,

however. And for the functional pigeonhole principle, we show that the technical tools developed

in [18] cannot prove any non-constant PCR space lower bounds. Although we have not been

able to prove this, we believe that similar impossibility results should hold also for ordering

principle formulas and for the canonical 3-CNF version of the pigeonhole principle. Since all

of these formulas require large degree in PCR and large space in resolution, it is natural to

suspect that they should be hard for PCR space as well. The fact that arguments along the lines

of [18] do not seem to be able to establish this suggests that we are still far from a combinatorial

characterization of degree analogous to the characterization of resolution width in [4].

It thus remains a major open problem to understand the exact relation between degree and

space in PC/PCR. Subsequent to the conference version of this paper [26], Galesi et al. [28] have

shown that the square root of resolution width is a lower bound on PCR space (and hence so is

the square root of polynomial calculus degree), but it is not clear whether this square root loss

is necessary. For formulas such as Tseitin formulas, functional PHP formulas, and ordering

principle formulas, it seems reasonable to believe that PCR space lower bounds without the

square root should hold.

Also, our separations of size and degree on the one hand and space on the other depend on

the characteristic of the underlying field, in that the characteristic must be chosen first and the

formula family exhibiting the separation works only for this specific characteristic. It follows

from [28] that there are formulas (namely, graph-based versions of onto functional pigeonhole

principle formulas) of size Θ(=) that can be refuted in polynomial calculus in constant degree

and size O(= log =), but that require PCR space Ω
(√
=
)
. However, this is still weaker than

our separation results, which depend on the characteristic but gives an optimal separation

with a space lower bound Ω(=). The separation results in [28] and our paper are therefore

incomparable, and it remains an interesting open problem to establish an optimal separation

that would also be independent of the characteristic of the underlying field.

Finally, an intriguing question is how (monomial) space in PC/PCR is related to (clause)

space in resolution. Since there are separations known for polynomial calculus size versus

resolution length, and for polynomial calculus degree versus resolution width, it would seem

reasonable to expect that PCR should be strictly stronger than resolution also with respect to

space, but this is completely open.7 Turning this question around, one can also ask to what

extent space lower bound techniques for resolution carry over to PC/PCR. Since so far we do

not know of any counterexamples, it is natural to wonder, for instance, whether semiwide CNF

formulas as defined in [1] have high space complexity not only in resolution but also in PCR.

7For completeness, we mention that there is a very weak (constant-factor) separation in [1], but it crucially

depends on a somewhat artificial definition of space where monomials are not counted with repetitions.
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A PCR space lower bounds from extendible families

For the sake of self-containment, in this appendix we give an exposition of the Bonacina–Galesi

framework [18] for proving space lower bounds in Polynomial Calculus. That is, we show how

the existence of an A-extendible family for a large value of A implies such bounds. Our proof

follows the same high level structure as Bonacina and Galesi’s, except that some of the technical

definitions are more elementary. Furthermore, we observe that this framework can actually

prove space lower bounds for a proof system that is stronger than PC or PCR.

Definition A.1 (Functional Calculus (FC)). A functional calculus configuration is a set of arbitrary

Boolean functions over Boolean variables. There is a single derivation rule, semantic implication,
where , can be inferred from 51 , . . . , 5= if every assignment that satisfies 51∧ · · ·∧ 5= also satisfies

,.

Verifying a proof in FC is coNP-complete, and so FC is not a proof system in the sense of

Cook and Reckhow [23] unless coNP = NP.
There are many different circuit representations of the same Boolean function, so we need to

choose a minimal representation in order to define space.

Definition A.2. Let ℙ be a FC configuration. A set * = {<1 , . . . , <B} of monomials defines ℙ
if for every function 5 ∈ ℙ there is a function , such that ,(<1 , . . . , <B) ≡ 5 (G1 , . . . , G=). The
monomial space of ℙ, denoted by Sp(ℙ), is the minimum size of a defining set of monomials.

We can interpret polynomials in PCR as Boolean functions if we project them to the

Boolean ring F [G, G, H, H, . . .]/Span

(
G2 − G, 1 − G − G, G2 − G, H2 − H, . . .

)
. Furthermore, the set

of monomials in a PCR configuration counted without repetitions is a defining set of monomials

for a FC configuration. Therefore we can view every proof in PCR as a proof in FC that uses at

most the same space. In particular, Spℱ C(� `⊥) ≤ SpPCℛ(� `⊥).
We now prove Theorem 2.7, following Bonacina and Galesi [18]. The general plan of the

proof is to consider a FC derivation from a formula � in small space, and show that every

configuration arising in the derivation is satisfiable. Since a refutation ends with an unsatisfiable

configuration, the derivation is not a refutation.

In order to show that every configuration arising in the derivation is satisfiable, we maintain

a satisfiability witness, in the form of a structured set of assignments together with a CNF

formula. The following definition captures the sense in which a satisfiability witness guarantees

that a configuration is satisfiable. Fix a set + of variables and consider partitions and total

assignments with respect to this set. Recall that a total assignment assigns a value to each
variable in + .

Definition A.3. Let (Q ,ℋ) be a structured set of assignments, � be a CNF formula, and ℙ be

a set of Boolean functions. We write � |=(Q ,ℋ) ℙ if every total assignment that extends some

partial assignment inℋ and satisfies � also satisfies ℙ.

In the proof, ℙ is one of the configurations that form the FC refutation, and (Q ,ℋ), �
together form a satisfiability witness for ℙ. The CNF � is composed of two parts: a satisfiable

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 38

http://dx.doi.org/10.4086/toc


TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

subset �′ ⊂ �, which could be empty, and a 2-CNF " with a very specific form given by the

following definition.

Definition A.4. Let " be a 2-CNF formula over the variables + . We say that " is a transversal
of a partial partition Q defined on+ if" mentions exactly one variable from each block &8 ∈ Q,
and each mentioned variable appears exactly once. (In particular, |Q| must be even and the

number of clauses in " is |Q|/2.)

A transversal CNF formula is always satisfiable, and so for �′ = ∅, any configuration ℙ that

has a satisfiability witness of this form must in fact be satisfiable. To handle an arbitrary �′,
we add the requirement that (Q ,ℋ) respect �′. Finally, we can formally define the concept of

satisfiability witness.

Definition A.5. Letℙ be a set of Boolean functions. A tuple (�′;Q ,ℋ , ") is a satisfiability witness
for ℙ if:

1. �′ is a satisfiable CNF formula.

2. (Q ,ℋ) is a structured assignment set which respects �′.

3. " is a 2-CNF formula which is a transversal of Q.

4. �′ ∧" |=(Q ,ℋ) ℙ.

The size of a satisfiability witness (�′;Q ,ℋ , ") is |" |.

We single �′ out since its value is fixed while Q ,ℋ , " are dynamic and change throughout

the FC refutation.

A FC refutation is composed of three kinds of steps: axiom download, inference and erasure.

It turns out that the first two steps are relatively easy to handle, as long as we maintain the

invariant that the size of the satisfiability witness is O(Sp(ℙ)). This invariant allows us to expand

the witness in order to accommodate new axioms as long as the monomial space is small enough,

using the extension property of extendible families.

Erasure is more difficult, since the monomial space of the configuration could shrink, and in

order to maintain the invariant, we need to shrink the witness as well. This is accomplished by

the following crucial lemma, which shows that if a configuration has any satisfiability witness,

then we can find another satisfiability witness for the configuration whose size is bounded in

terms of the monomial space of the configuration.

Because of the technical issue of multiple representations we also need to use the locality

lemma in axiom download steps, but we could omit it in a proof of a space lower bound for

PCR. It is however a key piece in erasure steps.

Lemma A.6 (Locality lemma). Suppose (�′;Q ,ℋ , ") is a satisfiability witness for some set ℙ of
Boolean functions. There is another satisfiability witness (�′;Q′,ℋ ′, "′) for ℙ such that Q′ ⊆ Q,
ℋ ′ = ℋ�Q′ and |"′ | ≤ 2Sp(ℙ).

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 39

http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

Proof. In this proof Q[G] denotes the (unique) class in Q that contains variable G.

The starting point of the proof is understanding the relation betweenmonomials in a defining

set * of monomials of ℙ and clauses in " which underlies the property �′ ∧" |=(Q ,ℋ) ℙ. A
clause � ∈ " affects a monomial < ∈ * whenever the two mention variables belonging to the

same partition in Q. If a clause � does not affect a monomial <, then the clause � puts no

constraints on the value of <.

Formally, we construct a bipartite graph between a minimal defining set* of monomials

and the set of clauses in " (which we identify with " itself). We draw an edge between < ∈ *
and � ∈ " whenever for some & ∈ Q, both < and � mention some variable in &.

We break * into two parts: one part which is collectively affected by a small number of

clauses, and another part in which we can associate with each monomial two clauses affecting

it. To this end, let *1 be an inclusion-maximal set under the constraint |#(*1)| ≤ 2|*1 |, and
let *2 = * \*1. We partition " accordingly into "1 = #(*1) and "2 = " \"1. As a slight

modification of Hall’s marriage theorem shows, the maximality of *1 implies that we can

associate with each monomial in *2 two unique clauses in "2 (that is, each clause in "2 is

associated with at most one monomial). In other words, there is a double matching from*2 to

"2. (For more details on this step, see [1, 27, 18].)

We construct the new 2-CNF "′ out of two parts: "′ = "1 ∪"′
2
. The first part "1, taken

verbatim from ", takes care of *1. The other part "′
2
, which we construct from the double

matching, takes care of*2.

The 2-CNF "′
2
consists of one clause �< for every monomial < ∈ *2. In order to define �< ,

let G0 ∨ H1 and I2 ∨ F3
be the two clauses in "2 that are matched to < in the double matching.

Assume without loss of generality that < = A4 B 5<′, where A ∈ Q[G] and B ∈ Q[I]. The clause
�< is defined as �< = A

4 ∨ B 5 .
By construction, |"′ | ≤ 2|*1 | + |*2 | ≤ 2|* | = 2Sp(ℙ). Having defined "′, we complete the

definition of the new satisfiability witness as follows. First, let Q′ = {Q[G] | G ∈ Vars("′)}; this
guarantees that "′ is a transversal of Q′. Observe that Q′ ⊆ &. Second, letℋ ′ = ℋ�Q′. It is
easy to check that (�′;Q′,ℋ ′, "′)) satisfies the first three properties of a satisfiability witness. It

remains to prove that �′ ∧"′ |=(Q′,ℋ ′) ℙ.
In order to show that �′ ∧ "′ |=(Q′,ℋ ′) ℙ, we consider an arbitrary total assignment 


extending somepartial assignment inℋ ′ and satisfying �′∧"′. Wewillmodify 
 to another total

assignment � that extends some partial assignment inℋ and satisfies �′ ∧", and furthermore

has the property that �(<) = 
(<) for every < ∈ * . By assumption, �′ ∧" |=(Q ,ℋ) ℙ, and so

�(ℙ) = 0. Since �(<) = 
(<) for every < ∈ * , we conclude that 
(ℙ) = 0 as well.

We proceed to define �. For each clause G0 ∨ H1 in "2, we will define � on Q[G],Q[H] using
partial assignments fromℋ , distinguishing two cases: the clause is matched to some monomial

in*2, or it is unmatched. The values of all the other variables are taken directly from 
.
Suppose < ∈ *2 is matched to the clauses G0 ∨ H1 and I2 ∨ F3

and �< = A4 ∨ B 5 , where

Q[G] = Q[A] and Q[I] = Q[B]. (In other words, we are in exactly the same situation described

above while constructing "′.) Define � on Q[G],Q[H],Q[I],Q[F] using partial assignments

fromℋ satisfying A4 , H1 , B 5 , F3
. As a result, � satisfies the clauses G0 ∨ H1 and I2 ∨ F3

and the

monomial <.
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For each unmatched clause G0 ∨ H1 in "2, we define � on Q[G] and Q[H] using partial

assignments from ℋ satisfying G0 and H1 . As a result, � satisfies the clause G0 ∨ H1 . Finally,
complete the definition of � by defining �(G) = 
(G) for any hitherto undefined variable G. From

the construction it is clear that � extends some partial assignment inℋ .

In order to complete the proof, we need to show that � satisfies �′ ∧", and that � agrees

with 
 on all the monomials in* . We start by showing that � satisfies �′ ∧". By construction,

� satisfies the clauses in "2. Since � agrees with 
 on variables mentioned in "1, � satisfies

"1. Finally, let � ∈ �′. Since (Q ,ℋ) respects �′, either the variables in � are disjoint from

⋃Q,
or the variables in � all belong to some &8 ∈ Q, and all assignments in the respective �8 ∈ ℋ
satisfy �. In the former case, � agrees with 
 on variables mentioned in �, and so � satisfies �.

In the latter case, � satisfies � since � extends some partial assignment inℋ .

It remains to show that �(<) = 
(<) for all monomials < ∈ * . In short, this is true for

monomials in *1 since 
 and � agree on all the relevant variables, and for monomials in *2

since in both assignments they are reduced to zero. We proceed to show this formally.

Suppose first that < ∈ *1. We claim that 
(E) = �(E) for all variables E mentioned in <.

Indeed, if 
(E) ≠ �(E) then E ∈ Q[G] for some clause � = G0 ∨ H1 in "2. Yet this implies that <

is connected to �, contradicting the definition of "2. We conclude that 
 and � agree on all

variables mentioned in <, and so 
(<) = �(<) in this case.

Suppose next that < ∈ *2. We claim that 
(<) = �(<) = 0. Let �< = A
4 ∨ B 5 , and recall that

< is of the form < = A4 B 5<′. Thus 
(<) = 0 since 
 satisfies �< , and �(<) = 0 since it satisfies

A4 and B 5 by construction. �

Theorem A.7 (restatement of Theorem 2.7 [18]). Let � be a CNF formula with an A-extendible family
ℱ with respect to some �′ ⊆ �. Then Spℱ C(� `⊥) ≥ A/4.

Proof. Let ℱ be an A-extendible family with respect to some satisfiable �′ ⊆ �. Let � be a

derivation from � in space Sp(�) < A/4. We will show that 1 ∉ � or, even stronger, that every

configuration ℙC appearing in � is satisfiable.

We will maintain a satisfiability witness (�′;QC ,ℋC , "C) for every configuration ℙC . Our

satisfiability witnesses will satisfy two conditions: (QC ,ℋC) ∈ ℱ , and the size bound |"C | ≤
2Sp(ℙC). The existence of a satisfiability witness implies that ℙC is satisfiable. Indeed, let 
 ∈ ℋC

be some partial assignment that satisfies all the literals in "C . Since (QC ,ℋC) respects �′, each
clause in �′ is either already satisfied by 
 or is completely disjoint from the domain of 
.
As �′ is satisfiable, we can extend 
 to a total assignment � which satisfies �′. Hence, from

�′ ∧"C |=(QC ,ℋC ) ℙC we have that � satisfies ℙC , and so ℙC is satisfiable.

We construct the satisfiability witnesses by induction. For C = 0, the satisfiability witness is

(�′; ∅, ∅, ∅). For the induction step, suppose we are given a satisfiability witness (�′;Q ,ℋ , ") for
ℙC . We will construct a satisfiability witness (�′;Q′,ℋ ′, "′) for ℙC+1. To simplify the notation,

let ℙ = ℙC and ℙ′ = ℙC+1. We distinguish three cases, which correspond to the three possible

steps in the proof.

Axiom download. Let � be the downloaded clause, which we also regard as a monomial.

If � ∈ �′ or every extension 
 of a partial assignment in ℋ satisfies �, then in particular
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�′ ∧" |=(Q ,ℋ) ℙ ∪ {�} = ℙ′, and "′ = ", Q′ = Q,ℋ ′ = ℋ form a satisfiability witness.

Otherwise, by hypothesis Sp(ℙ′) < A/4 and so Sp(ℙ) < A/4 − 1. Indeed, if * is a defining

set of monomials of ℙ, then * ∪ {�} is a defining set of monomials of ℙ′. By the induction

hypothesis, |Q| < A − 1. By the extension property of extendible family, there exists a structured

set of assignments (Q̃ , ℋ̃) ∈ ℱ such that |Q̃ | < A, (Q ,ℋ) 4 (Q̃ , ℋ̃) and ℋ̃ |= �. By assumption

ℋ 6|= � and so Q ≠ Q̃. Let Q̃ = Q ∪ {&}.
The assignments corresponding to & in ℋ̃ will ensure that the clause � is satisfied. Since

we are going to add a new clause to "′, we need to come up with two new parts in Q′, and so

we repeat the process. Let � be any axiom in � \ �′ such that ℋ̃ 6|= �; if no such axiom exists

then � is satisfiable and the theorem follows vacuously. Repeat the argument above and obtain

a new disjoint set &′ and a structured set of assignments (Q′,ℋ ′) ∈ ℱ .

Choose arbitrary variables G ∈ & and H ∈ &′, and let "′ = " ∪ {G ∨ H}. By construction,

(�′;Q′,ℋ ′, "′) is a satisfiability witness for ℙ′.
In both cases, by Lemma A.6 there is another satisfiability witness (�′;Q′′,ℋ ′′, "′′) for

ℙ′ satisfying the size bound and with Q′′ ⊆ Q′, ℋ ′′ = ℋ ′�Q′′. By the restriction property of

extendible families, we have (Q′′,ℋ ′′) ∈ ℱ .

Inference. It is enough to pick "′ = ", Q′ = Q, ℋ ′ = ℋ . The first three properties in the

definition of satisfiability witness continue to hold, while the last property follows from the

soundness of FC. Finally, the size bound trivially holds since |ℙ′ | ≥ |ℙ|.

Erasure. Since FC is sound, (�′;Q ,ℋ , ") is a satisfiability witness for ℙ′ as well. Hence

Lemma A.6 furnishes us with a satisfiability witness (�′;Q′,ℋ ′, "′) for ℙ′ satisfying the size

bound and with Q′ ⊆ Q, ℋ ′ = ℋ�Q′. By the restriction property of extendible families,

(Q′,ℋ ′) ∈ ℱ . �

Acknowledgements

The authors wish to thank Ilario Bonacina and Nicola Galesi for numerous and very useful

discussions.

Part of the work of the first author was performed while at the University of Toronto and

visiting KTH Royal Institute of Technology. The other authors performed this work while at

KTH Royal Institute of Technology.

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson: Space

complexity in propositional calculus. SIAM J. Comput., 31(4):1184–1211, 2002. Preliminary

version in STOC’00. [doi:10.1137/S0097539700366735] 3, 4, 7, 8, 10, 11, 12, 37, 40

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 42

https://doi.org/10.1145/335305.335347
http://dx.doi.org/10.1137/S0097539700366735
http://dx.doi.org/10.4086/toc


TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

[2] Michael Alekhnovich and Alexander A. Razborov: Lower bounds for polynomial calculus:

Non-binomial case. Proc. Steklov Inst. Math., 242:18–35, 2003. Available at Math-Net.Ru

(Russianwith English home page) and at author’s home page (English). Preliminary version

in FOCS’01. 4, 19

[3] Noga Alon and Joel Spencer: The Probabilistic Method. Wiley, 2nd edition, 2000.

[doi:10.1002/0471722154] 25

[4] Albert Atserias and Víctor Dalmau: A combinatorial characterization of resolution

width. J. Comput. System Sci., 74(3):323–334, 2008. Preliminary version in CCC’03.

[doi:10.1016/j.jcss.2007.06.025] 3, 4, 10, 12, 13, 14, 33, 37

[5] Per Austrin and Kilian Risse: Perfect matching in random graphs is as hard as Tseitin.

TheoretiCS, 1(2):1–47, 2022. Preliminary version in SODA’22. [doi:10.46298/theoretics.22.2]

5

[6] Roberto J. Bayardo Jr. and Robert Schrag: Using CSP look-back techniques to solve

real-world SAT instances. In Proc. 14th Nat’l Conf. on Artificial Intelligence (AAAI’97), pp.
203–208, 1997. Available at ACM DL. 2

[7] Paul Beame, Chris Beck, and Russell Impagliazzo: Time-space tradeoffs in resolution:

Superpolynomial lower bounds for superlinear space. SIAM J. Comput., 45(4):1612–1645,
2016. Preliminary version in STOC’12. [doi:10.1137/130914085] 3

[8] Chris Beck, Jakob Nordström, and Bangsheng Tang: Some trade-off results for polynomial

calculus. In Proc. 45th STOC, pp. 813–822. ACM Press, 2013. [doi:10.1145/2488608.2488711]

4, 36

[9] Eli Ben-Sasson: Size-space tradeoffs for resolution. SIAM J. Comput., 38(6):2511–2525, 2009.
Preliminary version in STOC’02. [doi:10.1137/080723880] 3, 4

[10] Eli Ben-Sasson and Nicola Galesi: Space complexity of random formulae in res-

olution. Random Struct. Algor., 23(1):92–109, 2003. Preliminary version in CCC’01.

[doi:10.1002/rsa.10089] 3

[11] Eli Ben-Sasson and Jakob Nordström: Short proofsmay be spacious: An optimal separation

of space and length in resolution. In Proc. 49th FOCS, pp. 709–718. IEEE Comp. Soc., 2008.

[doi:10.1109/FOCS.2008.42] 3

[12] Eli Ben-Sasson and Jakob Nordström: Understanding space in proof complexity: Separa-

tions and trade-offs via substitutions. In Proc. 2nd Innovations in Comp. Sci. Conf. (ICS’11),
pp. 401–416. Tsinghua U., 2011. Available at Tsinghua U. 3, 8

[13] Eli Ben-Sasson and Avi Wigderson: Short proofs are narrow—resolution made simple. J.
ACM, 48(2):149–169, 2001. Preliminary version in STOC’99. [doi:10.1145/375827.375835] 3,

4, 11, 15, 33

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 43

https://www.mathnet.ru/eng/tm403
http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://doi.org/10.1109/SFCS.2001.959893
http://dx.doi.org/10.1002/0471722154
https://doi.org/10.1109/CCC.2003.1214424
http://dx.doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1137/1.9781611977073.43
http://dx.doi.org/10.46298/theoretics.22.2
https://dl.acm.org/doi/10.5555/1867406.1867438
https://doi.org/10.1145/2213977.2213999
http://dx.doi.org/10.1137/130914085
http://dx.doi.org/10.1145/2488608.2488711
https://doi.org/10.1145/509907.509975
http://dx.doi.org/10.1137/080723880
https://doi.org/10.1109/CCC.2001.933871
http://dx.doi.org/10.1002/rsa.10089
http://dx.doi.org/10.1109/FOCS.2008.42
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/3.html
https://doi.org/10.1145/301250.301392
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS

[14] Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and Paul

Wollan: Space proof complexity for random 3-CNFs. Inform. Comput., 255(14):165–176,
2017. [doi:10.1016/j.ic.2017.06.003] 6, 12

[15] Archie Blake: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of Chicago,

1937. 2

[16] Béla Bollobás: The isoperimetric number of random regular graphs. Europ. J. Combinat.,
9(3):241–244, 1988. [doi:10.1016/S0195-6698(88)80014-3] 25

[17] Béla Bollobás and Imre Leader: Edge-isoperimetric inequalities in the grid. Combinatorica,
11:299–314, 1991. [doi:10.1007/BF01275667] 23

[18] Ilario Bonacina and Nicola Galesi: A framework for space complexity in algebraic proof

systems. J. ACM, 62(3):23:1–20, 2015. Preliminary version in ITCS’13. [doi:10.1145/2699438]

4, 5, 6, 9, 10, 12, 13, 20, 36, 37, 38, 40, 41

[19] Michael Brickenstein and Alexander Dreyer: PolyBoRi: A framework for Gröbner-

basis computations with Boolean polynomials. J. Symbolic Comput., 44(9):1326–1345, 2009.
[doi:10.1016/j.jsc.2008.02.017] 3

[20] Samuel R. Buss and Jakob Nordström: Proof complexity and SAT solving. In Armin Biere,

Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pp. 233–350. IOS

Press, 2nd edition, 2021. [doi:10.3233/FAIA200990] 6

[21] Vašek Chvátal and Endre Szemerédi: Many hard examples for resolution. J. ACM,

35(4):759–768, 1988. [doi:10.1145/48014.48016] 3

[22] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo: Using the Groebner basis

algorithm to find proofs of unsatisfiability. In Proc. 28th STOC, pp. 174–183. ACM Press,

1996. [doi:10.1145/237814.237860] 3

[23] Stephen A. Cook and Robert A. Reckhow: The relative efficiency of propositional

proof systems. J. Symbolic Logic, 44(1):36–50, 1979. Preliminary version in STOC’74.

[doi:10.2307/2273702] 2, 38

[24] Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov: The power

of negative reasoning. In Proc. 36th Comput. Complexity Conf. (CCC’21), pp. 40:1–24. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021. [doi:10.4230/LIPIcs.CCC.2021.40] 7

[25] Juan Luis Esteban and Jacobo Torán: Space bounds for resolution. In-
form. Comput., 171(1):84–97, 2001. Preliminary version in STACS’99 and CSL’99.

[doi:10.1006/inco.2001.2921] 3, 11

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 44

http://dx.doi.org/10.1016/j.ic.2017.06.003
http://dx.doi.org/10.1016/S0195-6698(88)80014-3
http://dx.doi.org/10.1007/BF01275667
https://doi.org/10.1145/2422436.2422486
http://dx.doi.org/10.1145/2699438
http://dx.doi.org/10.1016/j.jsc.2008.02.017
http://dx.doi.org/10.3233/FAIA200990
http://dx.doi.org/10.1145/48014.48016
http://dx.doi.org/10.1145/237814.237860
https://dl.acm.org/doi/10.1145/800119.803893
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.40
https://doi.org/10.1007/3-540-49116-3_52
https://doi.org/10.1007/3-540-48168-0_26
http://dx.doi.org/10.1006/inco.2001.2921
http://dx.doi.org/10.4086/toc


TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

[26] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals:

Towards an understanding of polynomial calculus: New separations and lower bounds

(Extended abstract). In Proc. 40th Internat. Colloq. on Automata, Languages, and Programming
(ICALP’13), pp. 437–448. Springer, 2013. [doi:10.1007/978-3-642-39206-1_37] 1, 5, 37

[27] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen: Space

complexity in polynomial calculus. SIAM J. Comput., 44(4):1119–1153, 2015. Preliminary

version in CCC’12. [doi:10.1137/120895950] 4, 10, 12, 36, 40

[28] Nicola Galesi, Leszek Kołodziejczyk, and Neil Thapen: Polynomial calculus space

and resolution width. In Proc. 60th FOCS, pp. 1325–1337. IEEE Comp. Soc., 2019.

[doi:10.1109/FOCS.2019.00081] 5, 12, 13, 33, 37

[29] Armin Haken: The intractability of resolution. Theoret. Comput. Sci., 39(2–3):297–308, 1985.
[doi:10.1016/0304-3975(85)90144-6] 3

[30] Trinh Huynh and Jakob Nordström: On the virtue of succinct proofs: Amplifying

communication complexity hardness to time-space trade-offs in proof complexity (Extended

abstract). In Proc. 44th STOC, pp. 233–248. ACM Press, 2012. [doi:10.1145/2213977.2214000]

4, 36

[31] Russell Impagliazzo and Valentine Kabanets: Constructive proofs of concentration

bounds. In Proc. 14th Internat. Workshop on Randomization and Computation (RANDOM’10),
pp. 617–631. Springer, 2010. [doi:10.1007/978-3-642-15369-3_46] 30

[32] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall: Lower bounds for the polyno-

mial calculus and the Gröbner basis algorithm. Comput. Complexity, 8(2):127–144, 1999.
[doi:10.1007/s000370050024] 4

[33] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński: Random Graphs. Wiley-Interscience,

2000. [doi:10.1002/9781118032718] 25, 32

[34] Jeong Han Kim and Nicholas C. Wormald: Random matchings which induce Hamilton

cycles, and Hamiltonian decompositions of random regular graphs. J. Combin. Theory–B,
81(1):20–44, 2001. [doi:10.1006/jctb.2000.1991] 12, 25

[35] Jan Krajíček: Proof Complexity. Volume 170 of Encyclopedia Math. and Its Appl. Cambridge

Univ. Press, 2019. [doi:10.1017/9781108242066] 6

[36] João P. Marques-Silva and Karem A. Sakallah: GRASP: A search algorithm for propo-

sitional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999. Preliminary version in

ICCAD’96. [doi:10.1109/12.769433] 2

[37] Mladen Mikša and Jakob Nordström: A generalized method for proving polynomial

calculus degree lower bounds. J. ACM, 71(6):1–43, 2024. Preliminary version in CCC’15.

[doi:10.1145/3675668] 4, 5, 13

THEORY OF COMPUTING, Volume 21 (4), 2025, pp. 1–48 45

http://dx.doi.org/10.1007/978-3-642-39206-1_37
https://doi.org/10.1109/CCC.2012.27
http://dx.doi.org/10.1137/120895950
http://dx.doi.org/10.1109/FOCS.2019.00081
http://dx.doi.org/10.1016/0304-3975(85)90144-6
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1007/978-3-642-15369-3_46
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.1002/9781118032718
http://dx.doi.org/10.1006/jctb.2000.1991
http://dx.doi.org/10.1017/9781108242066
https://doi.org/10.1109/ICCAD.1996.569607
http://dx.doi.org/10.1109/12.769433
https://doi.org/10.4230/LIPIcs.CCC.2015.467
http://dx.doi.org/10.1145/3675668
http://dx.doi.org/10.4086/toc


YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC VINYALS
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