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Abstract. A partition into distinct parts is refinable if one of its parts a can be replaced by
two different integers which do not belong to the partition and whose sum is a, and it is
unrefinable otherwise. Clearly, the condition of being unrefinable imposes on the partition a
non-trivial limitation on the size of the largest part and on the possible distributions of the
parts. We prove a O(n1/2)—upper bound for the largest part in an unrefinable partition of
n, and we call maximal those which reach the bound. We show a complete classification of
maximal unrefinable partitions for triangular numbers, proving that if n is even there exists
only one maximal unrefinable partition of n(n + 1)/2, and that if n is odd the number of
such partitions equals the number of partitions of [n/2] into distinct parts. In the second
case, an explicit bijection is provided.
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1. Introduction

Integer partitions into distinct parts may appear in several areas of mathe-
matics, sometimes unexpectedly. For example, they have been recently shown
to be linked to the set of generators of groups in a group-theoretical problem
related to cryptography [1,2]. In particular, Aragona et al. showed that the
generators of a given group are linked to partitions into distinct parts which
satisfy a condition of non-refinability [3] together with a condition on the min-
imal excludant. This motivates us to investigate some combinatorial aspects
of unrefinable partitions, i.e. those in which no part can be written as the sum
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of two different integers which do not belong to the partition, which to our
knowledge have not been investigated so far (cf. the On-Line Encyclopedia of
Integer Sequences for the first values [8, https://oeis.org/A179009]).

Computational results suggest that the maximal part in an unrefinable
partition of n is approximatively y/n. In this paper, we first prove a matching
upper bound for the maximal part and then we define mazimal unrefinable
partitions as those which reach the bound. As a main contribution, we pro-
vide a complete classification of maximal unrefinable partitions for triangular
numbers. We constructively prove, denoting by T,, the n-th triangular number,
that for even n there exists exactly one maximal unrefinable partition of T,,.
For odd n, we obtain a lower bound for the minimal excludant for the maximal
unrefinable partitions of T},, defined to be the least integers which is not a part
[6] and which has been investigated also recently by other authors [4,7]. The
knowledge of a bound on the minimal excludant, among other considerations,
allows us to show an explicit bijection between the set of the maximal unre-
finable partitions of T, and the set of partitions of [n/2] into distinct parts
in the classical sense [5].

The remainder of the paper is organized as follows: in Sect. 2 we introduce
the notation and define unrefinable partitions. In Sect. 3 we prove two upper
bounds for the maximal part in an unrefinable partition of n, distinguishing
the case when n is a triangular number and when it is not. The classification
theorem, i.e. Theorem 4.1, is proved in Sect. 4, which also contains the result
on triangular numbers of an even number. The odd case is developed in Sec 5,
which concludes the paper. In particular, we show in Theorem 5.11 a bijective
proof that the number of maximal unrefinable partitions of T,, equals the
number of partitions of [n/2] into distinct parts.

2. Preliminaries

Let N € N. A partition of N is a finite sequence A = (A1, Ag, ..., A¢) of positive
integers such that A\ < Ao < --- < )\; and 22:1 A; = N. When )\ is a partition
of N we write A\ = N. Each \; is called a part of the partition A and we call \;
its mazimal part. We denote by (A1, A2, ..., Ai—1, Ay Ait1, - - -, A¢) the partition
(M, A2, -3 N1, ity - - -, A) where the part A; is removed.

The partition A = (A1, A2, ..., \) is a partition into distinct parts if \y <
Ay < -+ < Ap and t > 2, ie. if each part appears exactly once. The set
Dy denotes the set of all the partitions of N into distinct parts. If A =
(A1, A2, ..., At) € Dy, the integers belonging to

My 1,2, A\ D A A

are called the missing parts of \, and are denoted by p1 < g < -+ < by, for
some m > 0. The least integer which is not a part of A, i.e. uy, is the minimal
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excludant of X [6]. We denote this by writing 11 = mex()), taking mex(\) =0
when M) = () as it is customary in the literature.

Definition 2.1. Let N € N. Let A = (A1, A2,...,At) be a partition of N into
distinct parts and let p; < po < --- < iy, be its missing parts. The partition
A is refinable if there exist 1 < ¢ <tand 1 < ¢ < j < m such that p; +p; = A,
and unrefinable otherwise. The set of unrefinable partitions is denoted by U,
and by Uy we denote those whose sum of the parts is N.

Definition 2.2. Let n € N. We denote by T,, the n-th triangular number, i.e.

def o~ . n(n+1)
T, ¥y =BT
2177

The complete partition m, def (1,2,...,n) is the partition of T}, with no missing
parts.

Notice that every complete partition is unrefinable. The same holds, by
definition, for partitions with a single missing part. In particular, if N = T,
for some n, then m, is an unrefinable partition of N. Otherwise, if n is the
least integer such that N < T'(n), then

Tnad = (1,2,...,d—1,d,d+1,...,n) (1)

is an unrefinable partition of N, where d = T;,, — N. In general, the admissi-
ble number of missing parts in an unrefinable partition is bounded as in the
following result.

Lemma 2.3. Let A = (A1, A2, ..., \y) be unrefinable and let p1 < po < -+ < iy,
be the missing parts. Then the number of missing parts m is bounded by

m< m | )

Proof. Let us start by observing that Ay —u; € A for 1 < i < m, otherwise from
At — i, i € My we obtain (A; — ;) + p; = A+ € A and thus A is refinable. We
prove the claim considering the complete partition 7y, and removing from this
the maximum number of parts different from ;. For the previous observation,
each candidate part u; to be removed has a counterpart A\; —u; in the partition.
The bound of Eq. (2) depends on the fact that this process can be repeated
no more than [\;/2] times. O

As already anticipated, our focus is on the maximal part in a partition
as in Definition 2.1. In the next section, using Lemma 2.3, we show that the
maximal part in an unrefinable partition of n is O(n'/?).
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3. Upper bounds on the maximal part

It is easy to check that the complete partitions w1, s, ..., 75 are the only un-
refinable partitions for the triangular numbers 17,75, ..., T5 respectively. In
the general case of T, for n > 6, this is not true. For example, the partition
(1,2,3,7,8) k21 = T is unrefinable. As a more complex example, in the case
of Ty we can calculate that

(1,2,3,4,5,6,7,8,9
1,2,3,4,6,8,10,11

1,2,3,5,6,7,10,11
1,2,3,4,5,9,10, 11

1,2,3,4,5,7,10,13

)
( )
(1,2,3,4,6,7,10,12)
(1,2,3,4,5,7,11,12)
(1,2,3,4,5,6,11,13)
(1,2,4,5,8,11,14)

( )
( )
(1,2,3,4,5,8,10,12)
( )
(1,2,3,4,5,6,10,14)

are all the unrefinable partitions of 45 = Ty.

It is clear that the property of being unrefinable imposes on the one hand
an upper limitation on the size of the largest part which is admissible in the
partition, and on the other a lower limitation on the minimal excludant. We
address in this section the natural question of determining what is the maxi-
mal part in an unrefinable partition of N. In the case where N is a triangular
number the following result provides an answer. The notation introduced in
the proof will be used throughout the paper.

Proposition 3.1. Let n € N and N = T,,. For every unrefinable partition A =
(A1, A2, ..., A) of N we have

FEquivalently,

UEZL LN -
Proof. Let us start by considering the complete partition 7, = N. Other unre-
finable partitions of N are obtained from 7,, by removing some parts smaller
than or equal to n and replacing them with parts larger than n. Hence,
the lower bound for the maximal part in any partition of N is n, obtained
when no part is removed. Since N = n(n 4+ 1)/2, n is the positive solution of
n? +n —2N =0 and so we have

V148N —1
3 .
Let h,j € N and let us denote by 1 < a1 < as < --- < ap < n the candi-

date parts to be removed from 7,, to obtain a new unrefinable partition of NV,
and by n +1 < a3 < ap < --- < a; the corresponding replacements. Since

Ae 2>
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> a; = > a; we have h > j. Moreover j > 1, otherwise from ) a; = a1 the
obtained partition is refinable. Hence we obtain

h>3,j>2 and h>j.

There are h missing parts in the interval {1,2,...,n} and exactly j parts ap-
pear in the interval {n + 1,n + 2,...,a;}. Therefore the number of missing
parts of A is

m=h+a; —n—j

To prove a;; < 2n — 4 we consider the cases where «; is either equal to 2n — 3,
equal to 2n — 2, or strictly larger than 2n — 2. We derive a contradiction in
each case. Let us observe that

(h—1)h

h
;ai§n—|—(n—1)—|—~--+(n—(h—l))zhn— 5

In the case a; = 2n — 3 we obtain m = h +n — 3 — j. By Lemma 2.3, we
have m < |«@;/2] =n —2, hence h < j + 1, and so h = j + 1. Notice that
ar+-Fa; >(G-1)n+2n—-3=(j+1)n—3=hn—3.
Therefore, since Y a; = Y «;, we have
(h—1)h
2 )
which is satisfied if h < 3, a contradiction.

In the case a; = 2n — 2 we obtain m = h+n — 2 — j. By Lemma 2.3, we
have m < |a;/2] =n—1, hence h < j+1, and so again h = j+1. Notice that

3>

ar+-4a;>J-1)n+2n—-2=G+1)n—-2=hn—-2.
Therefore, since > a; = > a;, we have
(h—1)h
—
which is satisfied if h < (14 1/17)/2 < 3, a contradiction.

To conclude we consider the last case a; > 2n — 2. We have n — 1 < «;/2
and so

2>

o a;
aj—(n—1)>?jz {?]J

Hence, since h > j + 1, we have
m=h+a;—n—j> {%J+hfjflz {%J

which contradicts Lemma 2.3. O
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Notice that the upper bound of Eq. 3 is tight. Indeed, let us define the
following partition:

1,2, n—3,n+1,2n—4). (4)

It is easy to notice that m, = N and that 7, is unrefinable, since its least
missing parts are n—2 and n—1, and 2n—4 < (n—2)+(n—1). In the notation of
the proof of Proposition 3.1, 7, is obtained in the case h = 3 and j = h—1 = 2.

The counterpart of Proposition 3.1 in the case of non-triangular numbers
is obtained in a similar way.

Proposition 3.2. Let N € N be such that T,,—1 < N < T, for somen € N. For
every unrefinable partition A = (A1, Aa, ..., \t) of N we have

n<\<2n-—2. (5)
Equivalently,

1+8(N+d)—1
v +(2+) <M< VIT8N+d) -3
where d =T,, — N.

Proof. Let us start by considering d and the partition m,, q - N as in Eq. (1).
Other partitions of N are obtained from 7, 4 by removing some parts smaller
than or equal to n which are replaced by d and other parts larger than n
or only by other parts larger than n. Proceeding as in the proof of Proposi-
tion 3.1, let h,j € N and let us denote by 1 < a; < as < -+ < ap < n the
candidate parts to be removed from , 4 to obtain a new partition of IV, and
by a1 < ag < --- < a; the corresponding replacements. Since Y a; = Y oy
we have h > j > 1, and we may obtain h = j only if a3 = d. For this reason,
we need to consider the two cases separately.

Let us assume «; > n, for every 1 < i < j. Reasoning as in the proof of
Proposition 3.1 we can count m = (h + 1) + a; —n — j. On the other hand,
if @y = d and «; > n for every 2 < i < j, then we obtain just h missing
parts in the interval {1,2,...,n} and exactly j — 1 parts appear in the interval
{n+1,n+2,...,a;}, therefore we obtain the same formula for the number of
missing parts m = h+ a; —n — (j — 1). By Lemma 2.3 we obtain

h+[%w—n—j+1§0 (6)

If oj > 2n — 2, then [a;/2] > n and from Eq. (6) we obtain h < j —1, a
contradiction. O

Remark 1. Notice that the bound of Eq. (5) is reached by the partition
(1,2,...,mn—2,2n —2) - T, — 1 constructed from 7,1 = (2,3,...,n).

We now introduce maximal unrefinable partitions, the main subject of this
work, as those partitions A = (A1, A2, ..., A¢) € Uy whose \; is maximal.
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Definition 3.3. Let N € N. An unrefinable partition A = (Ay, Ag,..., A¢) of N
is called maximal if

At = max Ay
(A1, 5,0 €UN

We denote by Uy the set of the maximal unrefinable partitions of V.

In the case of triangular numbers N = T,, for some n > 6, by virtue of
Proposition 3.1, we have that A = (A1, Ag,...,\;) € Uy is maximal if and
only if \y =2n — 4.

Remark 2. As already observed in the proof of Proposition 3.1, for each A € U
there exist 1 < j < h,1<a; <az <---<ap<nand aj,az,...,a; >2n+1
such that A is obtained from 7, by removing the parts a;s which are replaced
by the parts «;s. Consequently, #Upy coincides with the number of choices
which lead to partitions meeting the mentioned conditions and, in addition,
the condition A; = 2n — 4. In the remainder of the work, when A € U we will
refer to a;s, ays, j and h as intended here.

4. Classification of maximal unrefinable partitions of triangular
numbers

We are now ready to prove our first main contribution. Using arguments similar
to those of the proofs in the previous section, we classify maximal unrefinable
partitions for triangular numbers.

Theorem 4.1. Letn € N, n > 6, and N =T,,. Then
(1) if n is even, then Uy = {m};
(2) if n is odd, then m, € Uy and the other partitions \ € Uy, A % T, are
such that j = h — 2 and the following conditions hold:
(i) the removed parts ai,...,ap—3 are replaced by 2n —4 —aq,2n — 4 —
as,...,2n—4 —ap_3, and
(ii) the triple (ap—2,an—1,an) is one of the following

(n—4,n—-3n—-2),(n—4n—-2n—-1),(n—3,n—2,n),(n—2,n—1,n).

Proof. Let \ € I[NJN and let ai,aqz,...,ap and ag,a2,...,05 = 2n — 4 as in
Remark 2. We already know that A > 3. From the hyphotheses on A we have
that
m=h+o;—n—j=h+n—4—j.

By Lemma 2.3 we have h—j < 2, and, since h > j, we obtain j € {h—1, h—2}.
Notice that if a € {a1,...,an} is such that a < n — 4, then « o —4-q
must belong to {aq,...,q -1}, otherwise « +a =2n—4 = a; € A, and so A
is refinable. Then each removed part a; such that a; < n — 4 is in one-to-one
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correspondence with its replacement which, for the sake of simplicity, we will
denote from now on by a;. On the other side, for the same symmetry argument,
no part in the interval {n —4,...,n} has a replacement. In such an interval
we may choose at most 5 parts. However, we are not allowed to remove, at the
same time, parts from one of the pairs (n — 4,n) and (n — 3,n — 1) without
contradicting the unrefinability of A. Analogously, we are not allowed to remove
more than three parts. Moreover, we cannot choose to pick only one part to
be removed in that interval, otherwise we would obtain h — 1 replacements but
at most j — 1 are allowed, and h > j.

We are left to consider the cases of two or three parts to be removed in the
interval {n —4,...,n}, both with the assumptions j =h—1or j=h—2. In
particular, we will show that in both settings of j, there exists no maximal par-
tition with two removed parts in the selected interval. Moreover, in the case j =
h—1 and three removed parts, we show that the only admissible partition is 7,.
Finally, partitions in the case j = h—2 and three removed parts are only possi-
ble for odd n as claimed in (2). Let us address each of the four cases separately.

Let us suppose j = h—1land 1 < a; < as < -+ < ap_2 < n—>5 and
n—4 <ap_1 <ap <n.Foreachl <i<j—1=h—2wehave o; = aj—a;. We
will now show that this configuration leads to a contradiction. To do this, we es-
timate Y a; and Y a; from above and from below, respectively. This is clearly
accomplished by noticing that ap_o >n+1,ap_3 >n+2,...,0 >n+h—2
and ap, < n,ap—1 < n — 1, obtaining ap—» < oy —ap—2 < n—5,ap-3 <
n—=6,...,a10 <n—~h—2. Hence

h+2

2
Zalghn—22+2+3+4—h _ R +5ht6

5 +9, and

Zazzhnﬁ-Zz—él—hn i 3h+2 — 4.

For Y a; = > «; we obtain an inequality which is satisfied for h < 3 , which
is a contradiction.

In the second case,ie. j=h—1l,and 1 < a1 <as < - <ap_3<n—5n—
4<ap—2 <ap—1 <ap <n,wehaveo; = aj—a; forevery 1 <i < h—3=j-2.
Notice that, in this case, the part o;_; = a2 is not determined by one of the
a;s. Proceeding as before, since ap,_3 > n+1,ap_4 >n+2,...,a1 > n+h—3,
ap_s>n+h—2and ap < n,ap_1 <n—1,a_9 < n—2, we determine a;,_3 <
aj—ap_3 <n—>5,ap-4 <n—06,...,a1 <n—h—1and we obtain the bounds

h+1

h? +3h+2
Zaighn—2i+3+4:hn—%+77 and

h—2
h? —3h+2
E i >h E'—4:h _— — 4.
o; > n—i—‘ 7 n + B
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From )" a; = > a; we obtain an inequality which is satisfied only for h = 3,
which corresponds to the partition (cf. also Eq. (4))

(1,2,...,n—=3,n+1,2n—4) =7, € Uy.

The third case j = h — 2 with two removed parts is immediately contradic-
tory, since the parts a1, aso,...,an_o determine h — 2 = j replacements but at
most j — 1 are possible.

The last case to be considered is the one where j = h — 2 and the three
largest parts a;s are chosen in the interval {n—4,...,n}. As already observed,
since A is unrefinable, the only possible choices are

(ap—2,an—1,an) € {(n—4,n—3,n—2),(n—4,n—2,n—1),
(77’737”727”)3(”723”7 lan)}a
which means ap—o + ap—1 + ap, € {3n — 9,3n — 7,3n — 5,3n — 3}. From
> a; = a; we obtain
ar+az+-+ap=(ap-2 —ar) + (-2 —az) + -+ (-2 — ap-3) + ap—2
and so, since ap—g = a; = 2n — 4,
2(a1 +ag+---+ap_3) + (ah—2+ap—1+ap) = (h—2)(2n — 4). (7)

Since the right side of Eq. (7) is even and ap—2 + ap—1 + ap is even only if n
is odd, Eq. (7) can be satisfied only in the case when n is odd. This proves
(2) when n is odd and that the partition 7, of Eq. (4) is the only maximal
unrefinable partition of 7,, when n is even, i.e. (1). O

From Theorem 4.1 we obtain that the description of maximal unrefinable
partitions for the triangular number of an even integer is completed. The odd
case is addressed in the following section.

Corollary 4.2. Let k € N and N = Tay,. Then #Uy = 1.

5. Triangular numbers of odd integers

Throughout this last section, N will denote the triangular number of an odd
integer. More precisely, let n = 2k — 1 € N be such that N =T,,.
From Theorem 4.1 we have that the set of maximal unrefinable partitions
of triangular numbers of odd integers can be partitioned in the following way
{7n | nodd }UAUBUCUD,
where

AL Ja, BE By c¥Ja, pE D

h>4 h>4 h>4 h>4
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TABLE 1. The anti-symmetric property shown on the parti-
tions A € Ur,;, A # 13

; n—2 n; ;)\t
1 2 3 4 5 6 7 819 10 11 12 13114 15 16 17 18 19 20 21122
oooooooo;ooooo;oooooooo;o
e © ¢ ¢ ¢ 0O © 0¢/0 o o |[o ej 0 o e o o o o o e
oooooo.o}.oooo‘ooo.oooo‘a
and
def i
Ah é U {)\ | A S UT,L7 (ah—Q;ah—ha‘h) = (n - 47” - 37” - 2)}7
n odd
def =~
B = |J (M A€Un,, (an2,an-1,an) = (n—4,n —2,n — 1)},
n odd
def i
¢ = |J (N AeUrn, (an-2,an-1,an) = (n—3,n—2,n)},
n odd
def ~
D= |J (M A€Ur,, (an2,an-1,an) = (n—2,n —1,n)}.
n odd

Each set Ay, By, Ch, Dy, is called a class of maximal unrefinable partitions. If
A € Ay, (resp. By,Cp or Dy) for some h we say that A is a partition of class
Ap, (resp. By, Cp or Dy).

The following consideration is a trivial but important consequence of The-
orem 4.1.

Corollary 5.1. Let n € N and N = T,. If A = (A1, A\a,..., \) € Uy, then
i #n—2 for every 1 <i <t.

Remark 3. (Anti-symmetric property) From Theorem 4.1(2) and Corollary 5.1
we derive that every partition A € Ur, , A # 7, is anti-symmetric with respect
ton — 2, i.e. for 1 < a < 2n — 4 we have

a¢ N <= 2n—4—a€),
provided that a # n — 2.

Ezample 5.2. Let us fix n = 13. In Table 1 we have displayed the three different
partitions of Ur,, \ {713}, where a black dot means that the corresponding
integer is a part and the white dot means otherwise. Disregarding the last
part which is fixed to be 2n — 4 due to the maximality constraint, the anti-

symmetric property with respect to n — 2 can be appreciated. Notice also that
min, g mex(A\) =5 = (n—3)/2 and that (n —2) —5+1="7= [n/2].
13
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Ezample 5.3. As another significative example, we show in Table 2 all the
partitions in UT27 = U378, classified according to the description of Theo-
rem 4.1. It is important to notice that, when h > 5, partitions in the same
class may appear with different multiplicities. Here all the parts \;s of the
partitions are listed, divided in three areas 1 < \; <n—-5,n—4< X \; <n
and n+ 1 < \; < 2n — 4 naturally induced by Theorem 4.1. Notice again that

we have rnin)\etﬁT27 mex(A) =12 = (n — 3)/2.

5.1. Bounds for h and the minimal excludant

It is natural to wonder, recalling that in general h > 4, what is an upper
bound for h in a maximal unrefinable partition A € fJT%_l. The answer to this
question is provided in Proposition 5.6, from which we also derive the result on
the lower bound for the minimal excludant in maximal unrefinable partitions
(cf. Corollary 5.9). Let us address before the two extremal cases h = 4 and
h =5.

Proposition 5.4. Let n > 7 be odd. We have:
(1) UT NDy =10,
(2) UT7 NCy=0 and if n > 9, then #(Up, NCy) = 1,
(3) UT7 NBy = UT9 NBs=0 and ifn > 11, then #(UT ﬂB4) =1,
(4) UT7 NAs = UTQ NAs =0 and if n > 11, then #(UTn NAy) =1.

Proof. Let \ € @Tn be obtained by removing the integers ai,as,as,as and
adding the replacements o1 and ae = 2n—4, which need to satisfy the following
conditions:

(i) 1<a; <n-5,

(i) n—4<as <az <aq <n,
(iii) n+1<a; =2n—4 —aq,
(iv) a1+ as + az + ay = ay + as.
For a contradiction, let us assume that A € Dy, and so ao =n —2,a3 =n —1
and ag = n. From Eq. (iv) we obtain
n—> 3n—3

and a1 =
2 2

Notice that a; + (n + 1) = a1 and, by hypothesis, a; > n+ 1. If oy =n + 1,
we obtain n = 5, a contradiction. Otherwise, since (n+ 1) ¢ A\, we obtain that
A is refinable. The claim (1) is then proved.

Let us now address the case (2). Similarly as before, we now have ay =
n—3,a3 =n — 2 and a4 = n and so we determine
n—3 3n—5

5 and a1 = 5

a; =

ap =
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Notice that from oy > n + 1 we obtain n > 7. However, assuming n = 7 leads
toa; +as =6 =n—1 € A, a contradiction since A is unrefinable. Let us now
prove that the obtained partition

o ,— 3 3n—5
)\d:f<...,n2 yeesn—4.n—1, n2 ,2n—4>

is unrefinable by showing that each possible sum a; 4+ a;, with 1 <17 < j <4,
is different from «;. Recall that by the classification of Theorem 4.1 we have
already ruled out those partitions which contradict the unrefinability in 2n—4.
Since n > 9, we have that a; + a2 = (3n —9)/2 > n — 1. Consequently, every
sum of missing parts is larger than n — 1 € A. Moreover, a; + as # g,
ar+az3=0Bn—-"T7)/2#a1,a1+as=38n—3)/2>ay,as+a3=2n—5>
and therefore as + a4,a3 + a4 > 1. Therefore A € C4 and it is unique by
construction, which proves the claim (2).
In the case of By, we find

n—1 q _3n—=7

5 an =G
From a3 > n+ 1 we have n > 9, and assuming n = 9 contradicts again
the unrefinability; therefore n > 11. With arguments similar to those of the
previous case the partition

1 _
(” ,...,n—5,n—3,n,3n27,2n—4>

a; =

2

is proved unrefinable and unique by construction, hence (3) is obtained.
Finally, considering the case of A4, we obtain

n+1 3n—9
and a1 = .
2
Now, a1 > n+ 1 implies n > 11 and ay + ag = (3n — 7)/2 > «;. This proves
that

ap =

— B
<’n; ,...,n5,n1,n,3n29,2n4> € Ay,

i.e. the claim (4). O

Proposition 5.5. Let n > 7 be odd and k > 0. We have:

(1) if n < 15, then Up, NCs = 0 and if n > 15, then #(T[NJTHHM NCs) =
[k/2] +1, N _

(2) if n < 17, then Ug, N Bs = 0 and if n > 17, then #(Ur,,,, N Bs) =
[k/2] +1, N _

(3) if n < 17, then Ug, N D5 = 0 and if n > 17, then #(Ur,,,,, N Ds) =
[k/2] +1,
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(4) if n <19, then Up, N As = 0 and if n > 19, then 7§E(I[~JT19+2,c NAs) =
|k/2] + 1.

Proof. Let us proceed as in the proof of Proposition 5.4. Let A € fJTn be
obtained by removing the integers a1, as, ..., a5 and adding the replacements
a1, as and ag = 2n — 4, which need to satisfy the following conditions:

(1) 1<a; <as <n-—>5,
(i) n—4<ag <ag <as <n,
(iii) n+1<a=2n—4—ay <a; =2n—4—ay,
(iV) a1 +ag+as+ag +as5 =0a; +as+ as.
First, let us address the case (1). We have a3 =n—3,a4 =n—2 and a5 =n
and, from Eq. (iii) and Eq. (iv), a; and ag satisfy the condition

3n—7
—. (8)

We first consider the case when as is maximal, i.e. as = n — 5, in which we
have a; = (n + 3)/2 and consequently oy = (3n — 11)/2 and as = n + 1.
Notice then that the condition of Eq. (8) can be met in | (a2 —a; —1)/2] other
ways by taking the first two parts to be removed as a; + ¢ and ay — i, for
1<i<|(ag—a1—1)/2]. Now, from a; < az we obtain n > 15. If n = 15, the
partition

+ 3 — 3n — 11
(...,n+ ,...,n—5,n—4,n—17n+1,n272n—4>

a1 + ag =

2

is unique by construction and is unrefinable since a; + as > «. In the other

cases, which are
as —a; — 1 n—15
= 9
=== g

we obtain an unrefinable partition since, letting of = 2n — 4 — (a1 + i) and
ab =2n—4 — (ay — i), we have

(a1 +1) + (a2 —i) = a1 + az > aq > af > aj.

The claim (1) is then obtained writing n = 15 + 2k in Eq. (9).
The proofs for (2) and (4) are obtained in the same way. When n = 17, the
partition

)+ — 1
<...,n+5,...,n5,n3,n,n+1,3n23,2n4> € By

2

and is unique by construction, and when n > 17 it can be modified in |(az —
a1—1)/2] = |(n—17)/4] ways as in the proof of (1). Analogously, when n = 19
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the partition

7 — 3n—15
<’n—2|- ,...,n—5,n—1,n,n—|—1,n2,271—4) € As

and is unique by construction, and when n > 19 it can be modified in |[(n —
19)/4] ways.

It remains to prove the slightly different case (3). Here, we have a; + as =
(3n—9)/2 and, proceeding as above, from ag = n—5 we obtain a; = (n+1)/2
and o1 = (3n — 9)/2. This leads to the contradiction a; + as = ay. The
argument of (1) is here replicated starting from as = n — 6. It is now easy to
see that, when n = 17, the partition

+3 3n — 11
(7n—2|- ,...,n—6,...,n—3,n+2,n,2n—4>,

2

unique by construction, is unrefinable. When n > 17, it can be modified in
[(n —17)/4| ways, which proves (3). O

Proposition 5.6. Let n > 7 be odd and h > 6. We have
(1) Up, N Dy # 0 if and only if n>h% —h—7,
(2) Ugp, NCh # 0 if and only if n > h% —h — 5,
(3) U, N By # 0 if and only if n > h% —h — 3,
(4) fJTnﬂAh#@ if and only if n > h?> —h — 1.

Proof. We proceed as in Proposition 5.4 and Proposition 5.5, assuming the
conditions

(i) 1<a;<as<---<ap_3z3<n-—25,

(ii) n—4<ap_o<ap_1<ap<n,

(i) n+l<apsz=2n—-4—ap-s3<apg=2n—-4—ap_4<--<a=

2n—4 —aq,

(iv) Ya; = a.
If )\ e [[~JTn N Dy, then ap_o + ap—1 + ap = 3n — 3 and therefore, from Eq. (iii)
and Eq. (iv),

h—2)2n—4)—(3n—3 2h — 7 11 —4h
ot ran . (B=2@n =4 = Bn=3) _ Gh-Tjn+11-dh

2 2
Let us now assume that ap_3 =n—>5,ap_4 =n—06,...,a2 =n — h, i.e. let us
maximize the sum as + - -+ + a5_3. We obtain

h
. h(h+1
as+ - +ap_3= (h—4)n—¥z: (h74)n—%+10,

1=

from which we can calculate

n+h?—-3h—9
—

ay =
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Imposing a; < as we obtain n > h? — h — 9. In this setting, we have

3n—h®>+3h+1 3n+h?—5h—9

= and a1 +ag = .
2 2

Notice that a; +ag > « is satisfied for h > 6, hence the provided construction
leads to a partition A which belongs to Dy, if and only if n > h? —h—7, i.e. (1).

In the cases (2), (3) and (4) we proceed analogously, maximizing as + ag +
...ap_3, provided that ap_s,an_1,ap are modified accordingly. In particular,
when considering Cj, we have
n+h?—-3h—T 3n—h?+3h—1

alzf and o 5

From a; < as we have n > h? — h — 5 and from
3n+h?—5h—17

Qaq

oy <ay+ax =

2
we obtain A € Cp, i.e. the claim (2) follows.
In the case of B;, we have
n+h?>—-3h -5 3n —h?+3h—3
a = and ;= 5 )

From a; < as we have n > h?> — h — 3 and from
3n+h®—-5h—5
2
we obtain A € By, i.e. the claim (3) is proved.
Finally, assuming the conditions of A; we have

n+h?—3h—-3 3n—h?+3h—5
@ =————— and o= .
2 2
From a; < as we have n > h?> — h — 1 and from
3n+h%?—5hnh—3
2

we obtain A € Ay, from which the desired result (4) follows. O

o < ay+az =

o < ay+ap =

By interchanging the role of n and h in the statements of Proposition 5.6,
we obtain the following description of the set of maximal unrefinable partitions
of triangular numbers of an odd number, where we can read the upper bound
for h in each different class.

Corollary 5.7. Let n > 7 be odd. Then

L1+\/WJ LH—JWJ L1+\/mj L1+\/WJ
2 2 2 2
Ur, = {mn}U U »»v U auv U B.U |J A|nUr,.
h=4

h=5 h=4 h=4 =
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Remark 4. In the proof of Proposition 5.6 we have exhibited an example of un-
refinable partition for each class, constructed by maximizing as +asz+...ap—3
and consequently by determining a;. The unrefinability of the obtained parti-
tion is then granted from the fact that a;+as > «7. Notice that, each other par-
tition X’ of the same class is determined by the removed parts a},a5,...,a)_,
such that @} = a; + ¢ and a, = a5 — is—1 for s > 1 and iy, > 0, where
1= Zg;f is, provided that a} < af for i < s. The unrefinability of X’ is then
easily proved, since

/ / * * !
ay+ay=a1+t+ax—1 >a;+ax > o > Q.

Ezample 5.8. Let n = 49. For the bound in the previous corollary, when con-
sidering partitions of class D we have 5 < h < (1 ++/29 +4n)/2 = 8. Let us

fix h = 7 and construct all the partitions in Uz, N D7. We recall that, for
Theorem 4.1, a partition of class D7 is given when a1,as3...,a,_3 = a4 are
specified. Therefore, for the sake of simplicity, we denote the partitions just
by listing the removed parts (a1, as, as, as). Let us start, as in Proposition 5.6,
from the partition

(n +h?—3h—9
2

All the remaining partitions in D7, obtained as in Remark 4, are:
(35,41,43,44) (36,40,43,44)
(37,39,43,44) (36,41,42,44)
(37,40,42,44) (38,39,42,44)
(38,40,41,44) (37,41,42,43)
(38,40, 42,43) (39,40,41,43)

,n—?,n—6,n—5) = (34,42,43,44) .

The partitions in other classes are obtained analogously.

We have already highlighted in Example 5.2 and in Example 5.3 what
min, g mex(A) looks like. The intuition can now be easily proved as a con-

sequence of the previous propositions.

Corollary 5.9. Let n > 7 be odd. For each \ € I[NJTn we have
(n—3)

5
Proof. Notice that p; = a;. The claim is trivial if A = 7,,. Otherwise it follows
from Propositions 5.4, 5.5 and 5.6 , recalling that a; was calculated in order
to be minimal, since as + a3 + -+ + ap_3 was maximized. The results are

summarized in Table 3, where it is not hard to check that (n —3)/2 is the
smaller value that a; can assume. O

mex(\) = p; >
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TABLE 3. Values of a; in the construction of Proposi-
tions 5.4, 5.5 and 5.6 , for h =4, h=5and h > 6

class ai

Cy (n—3)/2

By (n—1)/2

Ay (n+1)/2

Ds (n+3)/2

Cs (n+3)/2

Bs (n+5)/2

As (n+7)/2

Dy, (n+h?—3h—9)/2
Ch, (n+h?—-3h—17)/2
By, (n+ h?—3h—5)/2
Ap, (n+h?—3h—3)/2

5.2. The bijection

In this conclusive section we prove the main contribution of this work, i.e. we
show that, when n is odd, the number of maximal unrefinable partitions of
T,, equals the number of partitions of [n/2] into distinct parts by means of a
bijective proof. Notice that, by the anti-symmetric property (Remark 3) and
by the bound on the minimal excludant (Corollary 5.9), a partition in U, is
determined by at most
—_9)— - b

(n=2)-— 2 2
parts. The following theorem is used to establish a bijection between f[VJT2k_1
and Dy.

n—3 n+171:{n"71

Theorem 5.10. Let ay,aq,...,a, be the missing parts smaller than or equal to
n — 3 of an unrefinable partition X\ # w, of T, for some odd integer n > 7.
Then n, A and its class are uniquely determined.

Proof. Let us start by proving that n can be obtained from knowing

ai,as,...,0,. In particular, let us prove that
2% a;+ 144
n= iz @i+ 1+ du (10)
2u—1

by distinguishing the four possible classes. Let us first assume A € D; for
some h > 5. Recalling that a, < n — 3 and, by the definition of D} and by
Remark 3, since ap—1 = n — 1 and ap, = n, we have a, ¢ {n — 3,n — 4}.
Therefore a,, < n—>5, and so u = h— 3. Recalling that the following conditions
hold
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(i) 1<a;<as<---<ap_3z3<n-—25,

(i) n—4<ap_2 <ap_1 <ap <n,
(iil) n < ap_3 =2n—4—ap_3 < Qp_g =2n—4d—ap_4 < --- < a1 = 2n—4—ay,
(iv) Yai = i,

we obtain

Zu:“‘ ~ (u+1)(2n—4) — (3n—3)
1 T 2 b)
from which we determine n as claimed.

Let us consider the class Cp. In this case, reasoning as above, we have
ay, =n—3 and a,_1 <n — 5, which means u — 1 = h — 3. Therefore

- u(2n —4) — (3n — 5)
;ai—( Zaz— 5 ;

from which we obtain again Eq. (10).
When \ € By, we have a,, = n — 4, which means h = u + 2, so

“ = w(2n —4) — (30 —7)
a;—(n—4)= ) a;= )

from which the same n is determined.
In conclusion, if A € A, we have a,, =n—3 and a1 =n—4,soh=u+1
and Eq. (10) is satisfied since

- (u—1)2n—4) — (3n—9)
;ai—(n— ZGZ 5 .

Now that n is determined from a1, as, ..., a,, the class of the partition can
be recognized by looking at a,_1 and a,. In particular
Gy <N —4 < X EDyys,
ay=n—3and ay,_1 <n—4 <= A€ CCyto,
Gy =n—4 <= N€ Byyo,
ay=n—3and ay,_1=n—4 <= X € Ayy1.

To conclude, we determine the partition by using the anti-symmetric property
(cf. Remark 3). O

We are now ready to prove our last result. Denoting by D the set of all the
partitions into distinct parts, let us define the following subsets of D:

A = (A A M) [ AED, A =1, =2, >3},
B = (A ey M) [ AED, A =2t > 2},
Cr Y A= (Ao M) [AED, A =10 >2,¢>2},
DF YN = (AL As, M) [ AED, A >3t > 2).
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It is not hard to notice that
D=A"UB*UC*"UD",
where

A A, BB, o€ e, ¥ o

t>3 t>2 t>2 t>2

Let us conclude the paper by proving a bijection between HAjTQk—l and Dy.

Theorem 5.11. Let ke N, k> 7, n=2k—1 and N =T,,. Let o: f[VJTn — Dy
be such that

AH{@%@ A=

(N—2—y,...,n —2—ag,n—2—a1) AN#7,

where, if X\ # T, then (a1,as,...,a,) are the missing parts of MxN{1,2,...,
n — 3} as in Theorem 5.10. Then o is bijective, therefore #Ur,, , = #Dy.

Proof. For the sake of brevity and by virtue of Theorem 5.10, we will de-
note each \ € fJTn \ {7} by listing its missing parts aj,as,...,a, in My N
{1,2,...,n — 3}. We prove that o is bijective by proving explicitly that par-
titions of AN Ug, , are in one-to-one correspondence with those of A* N Dy,
and that the same holds respectively for B and B*, C and C*, and D U {m,}
and D*.

Let us start by proving that o is well defined, i.e. for each A € f[VJTn we have
that o(\) is a partition of k& into distinct parts. If A\ = 7, there is nothing
to prove, otherwise, since the missing parts of A are distinct, so are the parts
n—2—a, < ---<n—2—ay <n-—2-—a; of o(\). We now prove that the
sum of the parts of o()) is k in each possible case, making extensive use of
Proposition 5.4, Proposition 5.5 and Proposition 5.6 without further mention.
If X e Ay, then A= ((n+1)/2,n —4,n — 3) and so

n+1 n—>5 n+1
0()\)—<1,2,n—2— 3 >—(1,2,2>_<172,2—3>
=(1,2,k — 3) € Dy.

Notice that, in particular, o(A) € Dy N A%, Similarly, if A\ € By, then A =
(n—=1)/2,n—4)ando(\) = (2,(n+1)/2 —2) = (2,k—2) e DNB;. If X € Cy
we have A = (n —3)/2,n—3),s0 c(A) = (1,(n+1)/2-1) = (1,k—1) €
D, NCs.

If A€ A5, then A= ((n+7)/24+i,n—5—i,n—4,n—3),for 0 <i < |[(n—
19)/4], and

—11 1
U(/\)<1,2,3+i,n i><1,2,3+z‘,n+6i>

2 2
= (1,2,3+4i,k—6—1i) € Dy,
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for 0 <4 < [(n —19)/4]. In particular, o(\) € Dy N Aj. Similarly, if A € B,
then A= ((n+5)/2+i,n—5—1i,n—4) and

1
o(A) = (2,3—1—2}”;—5—2') =(2,3+4,k—5—1i) € DpNB;,

for 0 <i < |(n—17)/4].If XA € C5, wehave A = ((n+3)/24+i,n —5—i,n —3)
and so

1
o)) = (1,3+z’,”+

2
for 0 <i < [(n—15)/4]. In the case when A = ((n +3)/2 +i,n — 6 — i) € Ds,
we have
o(N) = <4+i,
for 0 <i < [(n—17)/4].
Let us now consider A € Dy, for h > 6. In this case
A=(n+h*=3h—9)/24+in—h—i,....,n—5—iy_4),

—4—2') =(1,3+ik—4—i) €D, NCE,

n+1
2

—4—¢> = (4+ik—4—1i)eD,ND;,

. h—4 .
where i = )" i, and so

—h24+3h+5
U(/\)=<3+ih4,...,h—2+i1,n++_i)

2

h? —3h
:(3+ih4,...,h—2+i1,k+2— B —i).
Notice that
(B4 in—a) + (4 +in-5)+ -+ (h—2+1d1)+

2 _
+(rr2- )
2
h—2

h—4
h2 — 3h
S itd detk+2- S =
j=3 =1

—2)(h—1 2
G20l gy
2 2

h 23h—2+k+2—h 23h=k,

and so o(A\) € Dy NDj;_,. Similarly, if A € Cp,, then

h?—3h—7
A = <n+2_H',n—h—il,...,n—5—ih—4,n—3>
and

h? — 3h

O'()\):(1,3+ih_4,...,h—2—|—i17k‘+1— —i)G]D)kﬁCZ_Q
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since the sum of the first h — 3 terms is (h? — 3h)/2 — 1 —l—zg;f is. If A € By,
we have
h? —3h—5
A= (”+2+z‘,n—h—z’1,...,n—5—ih4,n—4>
an so

h? —3h

U()‘):(273+7;h47~-~,h—2+i17/€— —i)ekaB;Q,

since the sum of the first h — 3 terms is (h? — 3h)/2 + Zg;f is. Finally, in the

case when

A= <1H_h22_3h_3+i,n—h—i1,...7n—5—ih4,n—4,n—3> € Ap,
(11)

we obtain

h? — 3h

o(\) = (1,2,3—|—ih_4,...,h—2—|—il,k—1— —i) €Dy NA;_,,

(12)

noticing that the sum of the first h — 2 terms is (h? — 3h)/2 + 1 + Z}S:f is.

We proved that o is well defined. Notice also that o is trivially injective.
Therefore it remains to prove that o is surjective. In particular, it suffices to
check that for each partition \* € (A*UB*UC*UD*) N Dy, \* # (3,k — 3),
there exists A € (AUBUCUD) N Ug, , such that o(A) = A*, since o(7,) =
(3, k—3) by definition. Given \* = (A, A3, ..., AY) € Dy, by the definition of o
we have that the partition A denoted by its missing parts (n —2— A}, ..., n—
2 — A5,n — 2 —)}) is such that o(\) = A*. It remains to prove that such A
is a maximal unrefinable partition of n. The full details of the proof are here
omitted since they can be obtained by arguments very similar to those used
for proving that o is well defined. As an example, let us consider the case when
A e Af NDy, for t > 5, and let us prove that \* is the image of an unrefinable
partition A of class A. Since A* is a partition of k into t distinct parts and
contains 1 and 2 by definition we can write

t—1
A*—<1,2,3+z‘1,...,t1+z’t3,kz}\’s‘>7 (13)
s=1

where
t—1 t—3
t—1)t .
D N= : 2 Ly
s=1 s=1
for some iy,i2,...,4;—3 > 0 (cf. also Eq. (12)). We can now substitute ¢ — 1

to h —2 and (n+1)/2 to k in Eq. (13). Applying the correspondence \; <
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n — 2 — A;j_,,; and denoting the obtained partition A by listing its missing
parts, we obtain

+h*—3h—3

A= (”

5 —|—i,n—h—ih_4,...,n—5—i1,n—4,n—3>

as in Eq. (11). This proves that A\ € Up, , N Ay is unrefinable (cf. Propo-
sition 5.6 and Remark 4) and such that o(A) = A*. The remaining cases are
similar. O

Remark 5. The bijection o is not well defined when k < 7. However, it can
be easily shown that the result of Theorem 5.11 is still valid when k& = 4 and
k = 5, where we have #®T7 = #Ds =1 and #T[NJTQ = #D5 = 2, respectively.
The claim is false instead in the case k = 6, where we have #HNJTH =4 and
#D6 = 3.

In the proof of Theorem 5.11 we showed that o is a bijection from [[~JT2,€71
to Dg. Moreover, we also proved that ¢ is bijective when it is restricted to each
class.

Corollary 5.12. The function o of Theorem 5.11 maps in a bijective way
(i) An ﬂ}?mfl to Ax_, NDy,

(i1) B, NUp,, , to By _,NDy,

(ZZZ) ChNUg, , toCi_5NDy,

(i) Dy, NUr,, , to (Df_5\ {(3,k —3)}) NDy.

Ezxample 5.13. Coming back to the case of Example 5.2, we represent in Ta-
ble 4 the bijection o between maximal unrefinable partitions of 13 obtained in
the case h = j — 2 (hence those different from 713), represented by black dots,
and the partitions of 7 into distinct parts, represented by blue dots. Notice
that the partition (3,4) is not displayed since it corresponds to m13. Here x
corresponds to

z min mex(\).
XGUT13

TABLE 4. The bijection o shown on the partitions of A €

UTL’S? A 7é 7?13
X n—2 n A
1 23 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 : 22
6 5 4 3 2 1 |
. e o o o o o o ° ° . e
. e o o o o o o . . : .
. e o o o o o o . . 1 .
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TABLE 5. The values of f(n,h) and g(n,h) for each class

class f(n,h) g(n,h)
—h®46h* 4 (n—8)h—4n+2 —h? -5
Ah + (n ) n+ n—h ;Bh 5
—h346h? 6)h—4n— —h? —
B +6 +(n 6) n—=6 n—h ;Sh 3
c 7h3+6h2+(n 4)h—4n—14 n—h?4+3h—1
h 2
D 7h3+6h2+(n 2)h—4n—22 n—h>4+3h+1
h 2

Equivalently, by the anti-symmetric property, partitions of 7 into distinct parts
can be read looking at the black dots on the right side of the table.

Remark 6. Another combinatorial equality can be derived from the provided
construction for Uy. Indeed, assuming n = 2k — 1 for £k > 7, h > 6, and

reasoning as in Example 5.8, it can be easily shown that # (@Tn N Dh> equals
the number of partitions in h — 3 parts of f(n,h) in which each part is smaller
than or equal to g(n,h), where

—h3 + 6h? —2)h —4dn — 22 —h?2+3h+1
fln,y = FIH O 2NN g g,y = ML
The proof is obtained from Proposition 5.6, considering the bijection
a; < a; —ap + 1. (14)

In Table 5 the result is summarized for each class. Notice that, using the
bijection of Eq. (14) on the partitions shown in Example 5.8, one can recover
the eleven partitions of 31 in 4 parts, where each part is not larger than 11.
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